Metamath Proof Explorer


Theorem fnopabeqd

Description: Equality deduction for function abstractions. (Contributed by Jeff Madsen, 19-Jun-2011)

Ref Expression
Hypothesis fnopabeqd.1 φ B = C
Assertion fnopabeqd φ x y | x A y = B = x y | x A y = C

Proof

Step Hyp Ref Expression
1 fnopabeqd.1 φ B = C
2 1 eqeq2d φ y = B y = C
3 2 anbi2d φ x A y = B x A y = C
4 3 opabbidv φ x y | x A y = B = x y | x A y = C