Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Logic and set theory
fnopabeqd
Next ⟩
fvopabf4g
Metamath Proof Explorer
Ascii
Unicode
Theorem
fnopabeqd
Description:
Equality deduction for function abstractions.
(Contributed by
Jeff Madsen
, 19-Jun-2011)
Ref
Expression
Hypothesis
fnopabeqd.1
⊢
φ
→
B
=
C
Assertion
fnopabeqd
⊢
φ
→
x
y
|
x
∈
A
∧
y
=
B
=
x
y
|
x
∈
A
∧
y
=
C
Proof
Step
Hyp
Ref
Expression
1
fnopabeqd.1
⊢
φ
→
B
=
C
2
1
eqeq2d
⊢
φ
→
y
=
B
↔
y
=
C
3
2
anbi2d
⊢
φ
→
x
∈
A
∧
y
=
B
↔
x
∈
A
∧
y
=
C
4
3
opabbidv
⊢
φ
→
x
y
|
x
∈
A
∧
y
=
B
=
x
y
|
x
∈
A
∧
y
=
C