Metamath Proof Explorer


Theorem fnopabeqd

Description: Equality deduction for function abstractions. (Contributed by Jeff Madsen, 19-Jun-2011)

Ref Expression
Hypothesis fnopabeqd.1
|- ( ph -> B = C )
Assertion fnopabeqd
|- ( ph -> { <. x , y >. | ( x e. A /\ y = B ) } = { <. x , y >. | ( x e. A /\ y = C ) } )

Proof

Step Hyp Ref Expression
1 fnopabeqd.1
 |-  ( ph -> B = C )
2 1 eqeq2d
 |-  ( ph -> ( y = B <-> y = C ) )
3 2 anbi2d
 |-  ( ph -> ( ( x e. A /\ y = B ) <-> ( x e. A /\ y = C ) ) )
4 3 opabbidv
 |-  ( ph -> { <. x , y >. | ( x e. A /\ y = B ) } = { <. x , y >. | ( x e. A /\ y = C ) } )