Description: Equality deduction for function abstractions. (Contributed by Jeff Madsen, 19-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fnopabeqd.1 | |- ( ph -> B = C ) |
|
Assertion | fnopabeqd | |- ( ph -> { <. x , y >. | ( x e. A /\ y = B ) } = { <. x , y >. | ( x e. A /\ y = C ) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnopabeqd.1 | |- ( ph -> B = C ) |
|
2 | 1 | eqeq2d | |- ( ph -> ( y = B <-> y = C ) ) |
3 | 2 | anbi2d | |- ( ph -> ( ( x e. A /\ y = B ) <-> ( x e. A /\ y = C ) ) ) |
4 | 3 | opabbidv | |- ( ph -> { <. x , y >. | ( x e. A /\ y = B ) } = { <. x , y >. | ( x e. A /\ y = C ) } ) |