Description: Equality deduction for function abstractions. (Contributed by Jeff Madsen, 19-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fnopabeqd.1 | |- ( ph -> B = C ) |
|
| Assertion | fnopabeqd | |- ( ph -> { <. x , y >. | ( x e. A /\ y = B ) } = { <. x , y >. | ( x e. A /\ y = C ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnopabeqd.1 | |- ( ph -> B = C ) |
|
| 2 | 1 | eqeq2d | |- ( ph -> ( y = B <-> y = C ) ) |
| 3 | 2 | anbi2d | |- ( ph -> ( ( x e. A /\ y = B ) <-> ( x e. A /\ y = C ) ) ) |
| 4 | 3 | opabbidv | |- ( ph -> { <. x , y >. | ( x e. A /\ y = B ) } = { <. x , y >. | ( x e. A /\ y = C ) } ) |