| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fzennn.1 | 
							⊢ 𝐺  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  | 
						
						
							| 2 | 
							
								1
							 | 
							fzennn | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( 1 ... 𝑁 )  ≈  ( ◡ 𝐺 ‘ 𝑁 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							carden2b | 
							⊢ ( ( 1 ... 𝑁 )  ≈  ( ◡ 𝐺 ‘ 𝑁 )  →  ( card ‘ ( 1 ... 𝑁 ) )  =  ( card ‘ ( ◡ 𝐺 ‘ 𝑁 ) ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							syl | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( card ‘ ( 1 ... 𝑁 ) )  =  ( card ‘ ( ◡ 𝐺 ‘ 𝑁 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							0z | 
							⊢ 0  ∈  ℤ  | 
						
						
							| 6 | 
							
								5 1
							 | 
							om2uzf1oi | 
							⊢ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 )  | 
						
						
							| 7 | 
							
								
							 | 
							elnn0uz | 
							⊢ ( 𝑁  ∈  ℕ0  ↔  𝑁  ∈  ( ℤ≥ ‘ 0 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							biimpi | 
							⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							f1ocnvdm | 
							⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 )  ∧  𝑁  ∈  ( ℤ≥ ‘ 0 ) )  →  ( ◡ 𝐺 ‘ 𝑁 )  ∈  ω )  | 
						
						
							| 10 | 
							
								6 8 9
							 | 
							sylancr | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( ◡ 𝐺 ‘ 𝑁 )  ∈  ω )  | 
						
						
							| 11 | 
							
								
							 | 
							cardnn | 
							⊢ ( ( ◡ 𝐺 ‘ 𝑁 )  ∈  ω  →  ( card ‘ ( ◡ 𝐺 ‘ 𝑁 ) )  =  ( ◡ 𝐺 ‘ 𝑁 ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							syl | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( card ‘ ( ◡ 𝐺 ‘ 𝑁 ) )  =  ( ◡ 𝐺 ‘ 𝑁 ) )  | 
						
						
							| 13 | 
							
								4 12
							 | 
							eqtrd | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( card ‘ ( 1 ... 𝑁 ) )  =  ( ◡ 𝐺 ‘ 𝑁 ) )  |