| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fzennn.1 | 
							⊢ 𝐺  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  0 )  ↾  ω )  | 
						
						
							| 2 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑛  =  0  →  ( 1 ... 𝑛 )  =  ( 1 ... 0 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑛  =  0  →  ( ◡ 𝐺 ‘ 𝑛 )  =  ( ◡ 𝐺 ‘ 0 ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							breq12d | 
							⊢ ( 𝑛  =  0  →  ( ( 1 ... 𝑛 )  ≈  ( ◡ 𝐺 ‘ 𝑛 )  ↔  ( 1 ... 0 )  ≈  ( ◡ 𝐺 ‘ 0 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑛  =  𝑚  →  ( 1 ... 𝑛 )  =  ( 1 ... 𝑚 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑛  =  𝑚  →  ( ◡ 𝐺 ‘ 𝑛 )  =  ( ◡ 𝐺 ‘ 𝑚 ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							breq12d | 
							⊢ ( 𝑛  =  𝑚  →  ( ( 1 ... 𝑛 )  ≈  ( ◡ 𝐺 ‘ 𝑛 )  ↔  ( 1 ... 𝑚 )  ≈  ( ◡ 𝐺 ‘ 𝑚 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( 1 ... 𝑛 )  =  ( 1 ... ( 𝑚  +  1 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ◡ 𝐺 ‘ 𝑛 )  =  ( ◡ 𝐺 ‘ ( 𝑚  +  1 ) ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							breq12d | 
							⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ( 1 ... 𝑛 )  ≈  ( ◡ 𝐺 ‘ 𝑛 )  ↔  ( 1 ... ( 𝑚  +  1 ) )  ≈  ( ◡ 𝐺 ‘ ( 𝑚  +  1 ) ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑛  =  𝑁  →  ( 1 ... 𝑛 )  =  ( 1 ... 𝑁 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑛  =  𝑁  →  ( ◡ 𝐺 ‘ 𝑛 )  =  ( ◡ 𝐺 ‘ 𝑁 ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							breq12d | 
							⊢ ( 𝑛  =  𝑁  →  ( ( 1 ... 𝑛 )  ≈  ( ◡ 𝐺 ‘ 𝑛 )  ↔  ( 1 ... 𝑁 )  ≈  ( ◡ 𝐺 ‘ 𝑁 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							0ex | 
							⊢ ∅  ∈  V  | 
						
						
							| 15 | 
							
								14
							 | 
							enref | 
							⊢ ∅  ≈  ∅  | 
						
						
							| 16 | 
							
								
							 | 
							fz10 | 
							⊢ ( 1 ... 0 )  =  ∅  | 
						
						
							| 17 | 
							
								
							 | 
							0z | 
							⊢ 0  ∈  ℤ  | 
						
						
							| 18 | 
							
								17 1
							 | 
							om2uzf1oi | 
							⊢ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 )  | 
						
						
							| 19 | 
							
								
							 | 
							peano1 | 
							⊢ ∅  ∈  ω  | 
						
						
							| 20 | 
							
								18 19
							 | 
							pm3.2i | 
							⊢ ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 )  ∧  ∅  ∈  ω )  | 
						
						
							| 21 | 
							
								17 1
							 | 
							om2uz0i | 
							⊢ ( 𝐺 ‘ ∅ )  =  0  | 
						
						
							| 22 | 
							
								
							 | 
							f1ocnvfv | 
							⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 )  ∧  ∅  ∈  ω )  →  ( ( 𝐺 ‘ ∅ )  =  0  →  ( ◡ 𝐺 ‘ 0 )  =  ∅ ) )  | 
						
						
							| 23 | 
							
								20 21 22
							 | 
							mp2 | 
							⊢ ( ◡ 𝐺 ‘ 0 )  =  ∅  | 
						
						
							| 24 | 
							
								15 16 23
							 | 
							3brtr4i | 
							⊢ ( 1 ... 0 )  ≈  ( ◡ 𝐺 ‘ 0 )  | 
						
						
							| 25 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 1 ... 𝑚 )  ≈  ( ◡ 𝐺 ‘ 𝑚 ) )  →  ( 1 ... 𝑚 )  ≈  ( ◡ 𝐺 ‘ 𝑚 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑚  +  1 )  ∈  V  | 
						
						
							| 27 | 
							
								
							 | 
							fvex | 
							⊢ ( ◡ 𝐺 ‘ 𝑚 )  ∈  V  | 
						
						
							| 28 | 
							
								
							 | 
							en2sn | 
							⊢ ( ( ( 𝑚  +  1 )  ∈  V  ∧  ( ◡ 𝐺 ‘ 𝑚 )  ∈  V )  →  { ( 𝑚  +  1 ) }  ≈  { ( ◡ 𝐺 ‘ 𝑚 ) } )  | 
						
						
							| 29 | 
							
								26 27 28
							 | 
							mp2an | 
							⊢ { ( 𝑚  +  1 ) }  ≈  { ( ◡ 𝐺 ‘ 𝑚 ) }  | 
						
						
							| 30 | 
							
								29
							 | 
							a1i | 
							⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 1 ... 𝑚 )  ≈  ( ◡ 𝐺 ‘ 𝑚 ) )  →  { ( 𝑚  +  1 ) }  ≈  { ( ◡ 𝐺 ‘ 𝑚 ) } )  | 
						
						
							| 31 | 
							
								
							 | 
							fzp1disj | 
							⊢ ( ( 1 ... 𝑚 )  ∩  { ( 𝑚  +  1 ) } )  =  ∅  | 
						
						
							| 32 | 
							
								31
							 | 
							a1i | 
							⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 1 ... 𝑚 )  ≈  ( ◡ 𝐺 ‘ 𝑚 ) )  →  ( ( 1 ... 𝑚 )  ∩  { ( 𝑚  +  1 ) } )  =  ∅ )  | 
						
						
							| 33 | 
							
								
							 | 
							f1ocnvdm | 
							⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 0 ) )  →  ( ◡ 𝐺 ‘ 𝑚 )  ∈  ω )  | 
						
						
							| 34 | 
							
								18 33
							 | 
							mpan | 
							⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 0 )  →  ( ◡ 𝐺 ‘ 𝑚 )  ∈  ω )  | 
						
						
							| 35 | 
							
								
							 | 
							nn0uz | 
							⊢ ℕ0  =  ( ℤ≥ ‘ 0 )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							eleq2s | 
							⊢ ( 𝑚  ∈  ℕ0  →  ( ◡ 𝐺 ‘ 𝑚 )  ∈  ω )  | 
						
						
							| 37 | 
							
								
							 | 
							nnord | 
							⊢ ( ( ◡ 𝐺 ‘ 𝑚 )  ∈  ω  →  Ord  ( ◡ 𝐺 ‘ 𝑚 ) )  | 
						
						
							| 38 | 
							
								
							 | 
							ordirr | 
							⊢ ( Ord  ( ◡ 𝐺 ‘ 𝑚 )  →  ¬  ( ◡ 𝐺 ‘ 𝑚 )  ∈  ( ◡ 𝐺 ‘ 𝑚 ) )  | 
						
						
							| 39 | 
							
								36 37 38
							 | 
							3syl | 
							⊢ ( 𝑚  ∈  ℕ0  →  ¬  ( ◡ 𝐺 ‘ 𝑚 )  ∈  ( ◡ 𝐺 ‘ 𝑚 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							adantr | 
							⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 1 ... 𝑚 )  ≈  ( ◡ 𝐺 ‘ 𝑚 ) )  →  ¬  ( ◡ 𝐺 ‘ 𝑚 )  ∈  ( ◡ 𝐺 ‘ 𝑚 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							disjsn | 
							⊢ ( ( ( ◡ 𝐺 ‘ 𝑚 )  ∩  { ( ◡ 𝐺 ‘ 𝑚 ) } )  =  ∅  ↔  ¬  ( ◡ 𝐺 ‘ 𝑚 )  ∈  ( ◡ 𝐺 ‘ 𝑚 ) )  | 
						
						
							| 42 | 
							
								40 41
							 | 
							sylibr | 
							⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 1 ... 𝑚 )  ≈  ( ◡ 𝐺 ‘ 𝑚 ) )  →  ( ( ◡ 𝐺 ‘ 𝑚 )  ∩  { ( ◡ 𝐺 ‘ 𝑚 ) } )  =  ∅ )  | 
						
						
							| 43 | 
							
								
							 | 
							unen | 
							⊢ ( ( ( ( 1 ... 𝑚 )  ≈  ( ◡ 𝐺 ‘ 𝑚 )  ∧  { ( 𝑚  +  1 ) }  ≈  { ( ◡ 𝐺 ‘ 𝑚 ) } )  ∧  ( ( ( 1 ... 𝑚 )  ∩  { ( 𝑚  +  1 ) } )  =  ∅  ∧  ( ( ◡ 𝐺 ‘ 𝑚 )  ∩  { ( ◡ 𝐺 ‘ 𝑚 ) } )  =  ∅ ) )  →  ( ( 1 ... 𝑚 )  ∪  { ( 𝑚  +  1 ) } )  ≈  ( ( ◡ 𝐺 ‘ 𝑚 )  ∪  { ( ◡ 𝐺 ‘ 𝑚 ) } ) )  | 
						
						
							| 44 | 
							
								25 30 32 42 43
							 | 
							syl22anc | 
							⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 1 ... 𝑚 )  ≈  ( ◡ 𝐺 ‘ 𝑚 ) )  →  ( ( 1 ... 𝑚 )  ∪  { ( 𝑚  +  1 ) } )  ≈  ( ( ◡ 𝐺 ‘ 𝑚 )  ∪  { ( ◡ 𝐺 ‘ 𝑚 ) } ) )  | 
						
						
							| 45 | 
							
								
							 | 
							1z | 
							⊢ 1  ∈  ℤ  | 
						
						
							| 46 | 
							
								
							 | 
							1m1e0 | 
							⊢ ( 1  −  1 )  =  0  | 
						
						
							| 47 | 
							
								46
							 | 
							fveq2i | 
							⊢ ( ℤ≥ ‘ ( 1  −  1 ) )  =  ( ℤ≥ ‘ 0 )  | 
						
						
							| 48 | 
							
								35 47
							 | 
							eqtr4i | 
							⊢ ℕ0  =  ( ℤ≥ ‘ ( 1  −  1 ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							eleq2i | 
							⊢ ( 𝑚  ∈  ℕ0  ↔  𝑚  ∈  ( ℤ≥ ‘ ( 1  −  1 ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							biimpi | 
							⊢ ( 𝑚  ∈  ℕ0  →  𝑚  ∈  ( ℤ≥ ‘ ( 1  −  1 ) ) )  | 
						
						
							| 51 | 
							
								
							 | 
							fzsuc2 | 
							⊢ ( ( 1  ∈  ℤ  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 1  −  1 ) ) )  →  ( 1 ... ( 𝑚  +  1 ) )  =  ( ( 1 ... 𝑚 )  ∪  { ( 𝑚  +  1 ) } ) )  | 
						
						
							| 52 | 
							
								45 50 51
							 | 
							sylancr | 
							⊢ ( 𝑚  ∈  ℕ0  →  ( 1 ... ( 𝑚  +  1 ) )  =  ( ( 1 ... 𝑚 )  ∪  { ( 𝑚  +  1 ) } ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							adantr | 
							⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 1 ... 𝑚 )  ≈  ( ◡ 𝐺 ‘ 𝑚 ) )  →  ( 1 ... ( 𝑚  +  1 ) )  =  ( ( 1 ... 𝑚 )  ∪  { ( 𝑚  +  1 ) } ) )  | 
						
						
							| 54 | 
							
								
							 | 
							peano2 | 
							⊢ ( ( ◡ 𝐺 ‘ 𝑚 )  ∈  ω  →  suc  ( ◡ 𝐺 ‘ 𝑚 )  ∈  ω )  | 
						
						
							| 55 | 
							
								36 54
							 | 
							syl | 
							⊢ ( 𝑚  ∈  ℕ0  →  suc  ( ◡ 𝐺 ‘ 𝑚 )  ∈  ω )  | 
						
						
							| 56 | 
							
								55 18
							 | 
							jctil | 
							⊢ ( 𝑚  ∈  ℕ0  →  ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 )  ∧  suc  ( ◡ 𝐺 ‘ 𝑚 )  ∈  ω ) )  | 
						
						
							| 57 | 
							
								17 1
							 | 
							om2uzsuci | 
							⊢ ( ( ◡ 𝐺 ‘ 𝑚 )  ∈  ω  →  ( 𝐺 ‘ suc  ( ◡ 𝐺 ‘ 𝑚 ) )  =  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑚 ) )  +  1 ) )  | 
						
						
							| 58 | 
							
								36 57
							 | 
							syl | 
							⊢ ( 𝑚  ∈  ℕ0  →  ( 𝐺 ‘ suc  ( ◡ 𝐺 ‘ 𝑚 ) )  =  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑚 ) )  +  1 ) )  | 
						
						
							| 59 | 
							
								35
							 | 
							eleq2i | 
							⊢ ( 𝑚  ∈  ℕ0  ↔  𝑚  ∈  ( ℤ≥ ‘ 0 ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							biimpi | 
							⊢ ( 𝑚  ∈  ℕ0  →  𝑚  ∈  ( ℤ≥ ‘ 0 ) )  | 
						
						
							| 61 | 
							
								
							 | 
							f1ocnvfv2 | 
							⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 0 ) )  →  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑚 ) )  =  𝑚 )  | 
						
						
							| 62 | 
							
								18 60 61
							 | 
							sylancr | 
							⊢ ( 𝑚  ∈  ℕ0  →  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑚 ) )  =  𝑚 )  | 
						
						
							| 63 | 
							
								62
							 | 
							oveq1d | 
							⊢ ( 𝑚  ∈  ℕ0  →  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑚 ) )  +  1 )  =  ( 𝑚  +  1 ) )  | 
						
						
							| 64 | 
							
								58 63
							 | 
							eqtrd | 
							⊢ ( 𝑚  ∈  ℕ0  →  ( 𝐺 ‘ suc  ( ◡ 𝐺 ‘ 𝑚 ) )  =  ( 𝑚  +  1 ) )  | 
						
						
							| 65 | 
							
								
							 | 
							f1ocnvfv | 
							⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 )  ∧  suc  ( ◡ 𝐺 ‘ 𝑚 )  ∈  ω )  →  ( ( 𝐺 ‘ suc  ( ◡ 𝐺 ‘ 𝑚 ) )  =  ( 𝑚  +  1 )  →  ( ◡ 𝐺 ‘ ( 𝑚  +  1 ) )  =  suc  ( ◡ 𝐺 ‘ 𝑚 ) ) )  | 
						
						
							| 66 | 
							
								56 64 65
							 | 
							sylc | 
							⊢ ( 𝑚  ∈  ℕ0  →  ( ◡ 𝐺 ‘ ( 𝑚  +  1 ) )  =  suc  ( ◡ 𝐺 ‘ 𝑚 ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							adantr | 
							⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 1 ... 𝑚 )  ≈  ( ◡ 𝐺 ‘ 𝑚 ) )  →  ( ◡ 𝐺 ‘ ( 𝑚  +  1 ) )  =  suc  ( ◡ 𝐺 ‘ 𝑚 ) )  | 
						
						
							| 68 | 
							
								
							 | 
							df-suc | 
							⊢ suc  ( ◡ 𝐺 ‘ 𝑚 )  =  ( ( ◡ 𝐺 ‘ 𝑚 )  ∪  { ( ◡ 𝐺 ‘ 𝑚 ) } )  | 
						
						
							| 69 | 
							
								67 68
							 | 
							eqtrdi | 
							⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 1 ... 𝑚 )  ≈  ( ◡ 𝐺 ‘ 𝑚 ) )  →  ( ◡ 𝐺 ‘ ( 𝑚  +  1 ) )  =  ( ( ◡ 𝐺 ‘ 𝑚 )  ∪  { ( ◡ 𝐺 ‘ 𝑚 ) } ) )  | 
						
						
							| 70 | 
							
								44 53 69
							 | 
							3brtr4d | 
							⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 1 ... 𝑚 )  ≈  ( ◡ 𝐺 ‘ 𝑚 ) )  →  ( 1 ... ( 𝑚  +  1 ) )  ≈  ( ◡ 𝐺 ‘ ( 𝑚  +  1 ) ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							ex | 
							⊢ ( 𝑚  ∈  ℕ0  →  ( ( 1 ... 𝑚 )  ≈  ( ◡ 𝐺 ‘ 𝑚 )  →  ( 1 ... ( 𝑚  +  1 ) )  ≈  ( ◡ 𝐺 ‘ ( 𝑚  +  1 ) ) ) )  | 
						
						
							| 72 | 
							
								4 7 10 13 24 71
							 | 
							nn0ind | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( 1 ... 𝑁 )  ≈  ( ◡ 𝐺 ‘ 𝑁 ) )  |