Step |
Hyp |
Ref |
Expression |
1 |
|
cbvditgvw2.1 |
⊢ 𝐴 = 𝐵 |
2 |
|
cbvditgvw2.2 |
⊢ 𝐶 = 𝐷 |
3 |
|
cbvditgvw2.3 |
⊢ ( 𝑥 = 𝑦 → 𝐸 = 𝐹 ) |
4 |
1 2
|
breq12i |
⊢ ( 𝐴 ≤ 𝐶 ↔ 𝐵 ≤ 𝐷 ) |
5 |
1 2
|
oveq12i |
⊢ ( 𝐴 (,) 𝐶 ) = ( 𝐵 (,) 𝐷 ) |
6 |
5
|
a1i |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 (,) 𝐶 ) = ( 𝐵 (,) 𝐷 ) ) |
7 |
3 6
|
cbvitgvw2 |
⊢ ∫ ( 𝐴 (,) 𝐶 ) 𝐸 d 𝑥 = ∫ ( 𝐵 (,) 𝐷 ) 𝐹 d 𝑦 |
8 |
2
|
a1i |
⊢ ( 𝑥 = 𝑦 → 𝐶 = 𝐷 ) |
9 |
1
|
a1i |
⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) |
10 |
8 9
|
oveq12d |
⊢ ( 𝑥 = 𝑦 → ( 𝐶 (,) 𝐴 ) = ( 𝐷 (,) 𝐵 ) ) |
11 |
3 10
|
cbvitgvw2 |
⊢ ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 = ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑦 |
12 |
11
|
negeqi |
⊢ - ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 = - ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑦 |
13 |
4 7 12
|
ifbieq12i |
⊢ if ( 𝐴 ≤ 𝐶 , ∫ ( 𝐴 (,) 𝐶 ) 𝐸 d 𝑥 , - ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 ) = if ( 𝐵 ≤ 𝐷 , ∫ ( 𝐵 (,) 𝐷 ) 𝐹 d 𝑦 , - ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑦 ) |
14 |
|
df-ditg |
⊢ ⨜ [ 𝐴 → 𝐶 ] 𝐸 d 𝑥 = if ( 𝐴 ≤ 𝐶 , ∫ ( 𝐴 (,) 𝐶 ) 𝐸 d 𝑥 , - ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 ) |
15 |
|
df-ditg |
⊢ ⨜ [ 𝐵 → 𝐷 ] 𝐹 d 𝑦 = if ( 𝐵 ≤ 𝐷 , ∫ ( 𝐵 (,) 𝐷 ) 𝐹 d 𝑦 , - ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑦 ) |
16 |
13 14 15
|
3eqtr4i |
⊢ ⨜ [ 𝐴 → 𝐶 ] 𝐸 d 𝑥 = ⨜ [ 𝐵 → 𝐷 ] 𝐹 d 𝑦 |