Metamath Proof Explorer


Theorem cbvditgvw2

Description: Change bound variable and domain in a directed integral, using implicit substitution. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses cbvditgvw2.1 𝐴 = 𝐵
cbvditgvw2.2 𝐶 = 𝐷
cbvditgvw2.3 ( 𝑥 = 𝑦𝐸 = 𝐹 )
Assertion cbvditgvw2 ⨜ [ 𝐴𝐶 ] 𝐸 d 𝑥 = ⨜ [ 𝐵𝐷 ] 𝐹 d 𝑦

Proof

Step Hyp Ref Expression
1 cbvditgvw2.1 𝐴 = 𝐵
2 cbvditgvw2.2 𝐶 = 𝐷
3 cbvditgvw2.3 ( 𝑥 = 𝑦𝐸 = 𝐹 )
4 1 2 breq12i ( 𝐴𝐶𝐵𝐷 )
5 1 2 oveq12i ( 𝐴 (,) 𝐶 ) = ( 𝐵 (,) 𝐷 )
6 5 a1i ( 𝑥 = 𝑦 → ( 𝐴 (,) 𝐶 ) = ( 𝐵 (,) 𝐷 ) )
7 3 6 cbvitgvw2 ∫ ( 𝐴 (,) 𝐶 ) 𝐸 d 𝑥 = ∫ ( 𝐵 (,) 𝐷 ) 𝐹 d 𝑦
8 2 a1i ( 𝑥 = 𝑦𝐶 = 𝐷 )
9 1 a1i ( 𝑥 = 𝑦𝐴 = 𝐵 )
10 8 9 oveq12d ( 𝑥 = 𝑦 → ( 𝐶 (,) 𝐴 ) = ( 𝐷 (,) 𝐵 ) )
11 3 10 cbvitgvw2 ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 = ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑦
12 11 negeqi - ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 = - ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑦
13 4 7 12 ifbieq12i if ( 𝐴𝐶 , ∫ ( 𝐴 (,) 𝐶 ) 𝐸 d 𝑥 , - ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 ) = if ( 𝐵𝐷 , ∫ ( 𝐵 (,) 𝐷 ) 𝐹 d 𝑦 , - ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑦 )
14 df-ditg ⨜ [ 𝐴𝐶 ] 𝐸 d 𝑥 = if ( 𝐴𝐶 , ∫ ( 𝐴 (,) 𝐶 ) 𝐸 d 𝑥 , - ∫ ( 𝐶 (,) 𝐴 ) 𝐸 d 𝑥 )
15 df-ditg ⨜ [ 𝐵𝐷 ] 𝐹 d 𝑦 = if ( 𝐵𝐷 , ∫ ( 𝐵 (,) 𝐷 ) 𝐹 d 𝑦 , - ∫ ( 𝐷 (,) 𝐵 ) 𝐹 d 𝑦 )
16 13 14 15 3eqtr4i ⨜ [ 𝐴𝐶 ] 𝐸 d 𝑥 = ⨜ [ 𝐵𝐷 ] 𝐹 d 𝑦