Step |
Hyp |
Ref |
Expression |
1 |
|
cbvditgvw2.1 |
|- A = B |
2 |
|
cbvditgvw2.2 |
|- C = D |
3 |
|
cbvditgvw2.3 |
|- ( x = y -> E = F ) |
4 |
1 2
|
breq12i |
|- ( A <_ C <-> B <_ D ) |
5 |
1 2
|
oveq12i |
|- ( A (,) C ) = ( B (,) D ) |
6 |
5
|
a1i |
|- ( x = y -> ( A (,) C ) = ( B (,) D ) ) |
7 |
3 6
|
cbvitgvw2 |
|- S. ( A (,) C ) E _d x = S. ( B (,) D ) F _d y |
8 |
2
|
a1i |
|- ( x = y -> C = D ) |
9 |
1
|
a1i |
|- ( x = y -> A = B ) |
10 |
8 9
|
oveq12d |
|- ( x = y -> ( C (,) A ) = ( D (,) B ) ) |
11 |
3 10
|
cbvitgvw2 |
|- S. ( C (,) A ) E _d x = S. ( D (,) B ) F _d y |
12 |
11
|
negeqi |
|- -u S. ( C (,) A ) E _d x = -u S. ( D (,) B ) F _d y |
13 |
4 7 12
|
ifbieq12i |
|- if ( A <_ C , S. ( A (,) C ) E _d x , -u S. ( C (,) A ) E _d x ) = if ( B <_ D , S. ( B (,) D ) F _d y , -u S. ( D (,) B ) F _d y ) |
14 |
|
df-ditg |
|- S_ [ A -> C ] E _d x = if ( A <_ C , S. ( A (,) C ) E _d x , -u S. ( C (,) A ) E _d x ) |
15 |
|
df-ditg |
|- S_ [ B -> D ] F _d y = if ( B <_ D , S. ( B (,) D ) F _d y , -u S. ( D (,) B ) F _d y ) |
16 |
13 14 15
|
3eqtr4i |
|- S_ [ A -> C ] E _d x = S_ [ B -> D ] F _d y |