| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvmpo1davw2.1 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑧 ) → 𝐸 = 𝐹 ) |
| 2 |
|
cbvmpo1davw2.2 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑧 ) → 𝐶 = 𝐷 ) |
| 3 |
|
cbvmpo1davw2.3 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑧 ) → 𝐴 = 𝐵 ) |
| 4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑧 ) → 𝑥 = 𝑧 ) |
| 5 |
4 3
|
eleq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑧 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵 ) ) |
| 6 |
2
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑧 ) → ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) |
| 7 |
5 6
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑧 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) |
| 8 |
1
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑧 ) → ( 𝑡 = 𝐸 ↔ 𝑡 = 𝐹 ) ) |
| 9 |
7 8
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑧 ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑡 = 𝐸 ) ↔ ( ( 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑡 = 𝐹 ) ) ) |
| 10 |
9
|
cbvoprab1davw |
⊢ ( 𝜑 → { 〈 〈 𝑥 , 𝑦 〉 , 𝑡 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑡 = 𝐸 ) } = { 〈 〈 𝑧 , 𝑦 〉 , 𝑡 〉 ∣ ( ( 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑡 = 𝐹 ) } ) |
| 11 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ 𝐸 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑡 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑡 = 𝐸 ) } |
| 12 |
|
df-mpo |
⊢ ( 𝑧 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ 𝐹 ) = { 〈 〈 𝑧 , 𝑦 〉 , 𝑡 〉 ∣ ( ( 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑡 = 𝐹 ) } |
| 13 |
10 11 12
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐶 ↦ 𝐸 ) = ( 𝑧 ∈ 𝐵 , 𝑦 ∈ 𝐷 ↦ 𝐹 ) ) |