Metamath Proof Explorer


Theorem cbvoprab1davw

Description: Change the first bound variable in an operation abstraction. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvoprab1davw.1 ( ( 𝜑𝑥 = 𝑤 ) → ( 𝜓𝜒 ) )
Assertion cbvoprab1davw ( 𝜑 → { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { ⟨ ⟨ 𝑤 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜒 } )

Proof

Step Hyp Ref Expression
1 cbvoprab1davw.1 ( ( 𝜑𝑥 = 𝑤 ) → ( 𝜓𝜒 ) )
2 opeq1 ( 𝑥 = 𝑤 → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑤 , 𝑦 ⟩ )
3 2 adantl ( ( 𝜑𝑥 = 𝑤 ) → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑤 , 𝑦 ⟩ )
4 3 opeq1d ( ( 𝜑𝑥 = 𝑤 ) → ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ = ⟨ ⟨ 𝑤 , 𝑦 ⟩ , 𝑧 ⟩ )
5 4 eqeq2d ( ( 𝜑𝑥 = 𝑤 ) → ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ↔ 𝑡 = ⟨ ⟨ 𝑤 , 𝑦 ⟩ , 𝑧 ⟩ ) )
6 5 1 anbi12d ( ( 𝜑𝑥 = 𝑤 ) → ( ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜒 ) ) )
7 6 2exbidv ( ( 𝜑𝑥 = 𝑤 ) → ( ∃ 𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜒 ) ) )
8 7 cbvexdvaw ( 𝜑 → ( ∃ 𝑥𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑤𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜒 ) ) )
9 8 abbidv ( 𝜑 → { 𝑡 ∣ ∃ 𝑥𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) } = { 𝑡 ∣ ∃ 𝑤𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜒 ) } )
10 df-oprab { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { 𝑡 ∣ ∃ 𝑥𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜓 ) }
11 df-oprab { ⟨ ⟨ 𝑤 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜒 } = { 𝑡 ∣ ∃ 𝑤𝑦𝑧 ( 𝑡 = ⟨ ⟨ 𝑤 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜒 ) }
12 9 10 11 3eqtr4g ( 𝜑 → { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜓 } = { ⟨ ⟨ 𝑤 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜒 } )