| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbvral4vw.1 | ⊢ ( 𝑥  =  𝑎  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 2 |  | cbvral4vw.2 | ⊢ ( 𝑦  =  𝑏  →  ( 𝜒  ↔  𝜃 ) ) | 
						
							| 3 |  | cbvral4vw.3 | ⊢ ( 𝑧  =  𝑐  →  ( 𝜃  ↔  𝜏 ) ) | 
						
							| 4 |  | cbvral4vw.4 | ⊢ ( 𝑤  =  𝑑  →  ( 𝜏  ↔  𝜓 ) ) | 
						
							| 5 | 1 | ralbidv | ⊢ ( 𝑥  =  𝑎  →  ( ∀ 𝑤  ∈  𝐷 𝜑  ↔  ∀ 𝑤  ∈  𝐷 𝜒 ) ) | 
						
							| 6 | 2 | ralbidv | ⊢ ( 𝑦  =  𝑏  →  ( ∀ 𝑤  ∈  𝐷 𝜒  ↔  ∀ 𝑤  ∈  𝐷 𝜃 ) ) | 
						
							| 7 | 3 | ralbidv | ⊢ ( 𝑧  =  𝑐  →  ( ∀ 𝑤  ∈  𝐷 𝜃  ↔  ∀ 𝑤  ∈  𝐷 𝜏 ) ) | 
						
							| 8 | 5 6 7 | cbvral3vw | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐶 ∀ 𝑤  ∈  𝐷 𝜑  ↔  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ∀ 𝑐  ∈  𝐶 ∀ 𝑤  ∈  𝐷 𝜏 ) | 
						
							| 9 | 4 | cbvralvw | ⊢ ( ∀ 𝑤  ∈  𝐷 𝜏  ↔  ∀ 𝑑  ∈  𝐷 𝜓 ) | 
						
							| 10 | 9 | 3ralbii | ⊢ ( ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ∀ 𝑐  ∈  𝐶 ∀ 𝑤  ∈  𝐷 𝜏  ↔  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ∀ 𝑐  ∈  𝐶 ∀ 𝑑  ∈  𝐷 𝜓 ) | 
						
							| 11 | 8 10 | bitri | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐶 ∀ 𝑤  ∈  𝐷 𝜑  ↔  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 ∀ 𝑐  ∈  𝐶 ∀ 𝑑  ∈  𝐷 𝜓 ) |