Metamath Proof Explorer


Theorem cbvrex2

Description: Change bound variables of double restricted universal quantification, using implicit substitution, analogous to cbvrex2v . (Contributed by Alexander van der Vekens, 2-Jul-2017)

Ref Expression
Hypotheses cbvral2.1 𝑧 𝜑
cbvral2.2 𝑥 𝜒
cbvral2.3 𝑤 𝜒
cbvral2.4 𝑦 𝜓
cbvral2.5 ( 𝑥 = 𝑧 → ( 𝜑𝜒 ) )
cbvral2.6 ( 𝑦 = 𝑤 → ( 𝜒𝜓 ) )
Assertion cbvrex2 ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑧𝐴𝑤𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvral2.1 𝑧 𝜑
2 cbvral2.2 𝑥 𝜒
3 cbvral2.3 𝑤 𝜒
4 cbvral2.4 𝑦 𝜓
5 cbvral2.5 ( 𝑥 = 𝑧 → ( 𝜑𝜒 ) )
6 cbvral2.6 ( 𝑦 = 𝑤 → ( 𝜒𝜓 ) )
7 nfcv 𝑧 𝐵
8 7 1 nfrex 𝑧𝑦𝐵 𝜑
9 nfcv 𝑥 𝐵
10 9 2 nfrex 𝑥𝑦𝐵 𝜒
11 5 rexbidv ( 𝑥 = 𝑧 → ( ∃ 𝑦𝐵 𝜑 ↔ ∃ 𝑦𝐵 𝜒 ) )
12 8 10 11 cbvrexw ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑧𝐴𝑦𝐵 𝜒 )
13 3 4 6 cbvrexw ( ∃ 𝑦𝐵 𝜒 ↔ ∃ 𝑤𝐵 𝜓 )
14 13 rexbii ( ∃ 𝑧𝐴𝑦𝐵 𝜒 ↔ ∃ 𝑧𝐴𝑤𝐵 𝜓 )
15 12 14 bitri ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑧𝐴𝑤𝐵 𝜓 )