Metamath Proof Explorer


Theorem cbvrex2v

Description: Change bound variables of double restricted universal quantification, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvrex2vw when possible. (Contributed by FL, 2-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cbvrex2v.1 ( 𝑥 = 𝑧 → ( 𝜑𝜒 ) )
cbvrex2v.2 ( 𝑦 = 𝑤 → ( 𝜒𝜓 ) )
Assertion cbvrex2v ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑧𝐴𝑤𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvrex2v.1 ( 𝑥 = 𝑧 → ( 𝜑𝜒 ) )
2 cbvrex2v.2 ( 𝑦 = 𝑤 → ( 𝜒𝜓 ) )
3 1 rexbidv ( 𝑥 = 𝑧 → ( ∃ 𝑦𝐵 𝜑 ↔ ∃ 𝑦𝐵 𝜒 ) )
4 3 cbvrexv ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑧𝐴𝑦𝐵 𝜒 )
5 2 cbvrexv ( ∃ 𝑦𝐵 𝜒 ↔ ∃ 𝑤𝐵 𝜓 )
6 5 rexbii ( ∃ 𝑧𝐴𝑦𝐵 𝜒 ↔ ∃ 𝑧𝐴𝑤𝐵 𝜓 )
7 4 6 bitri ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑧𝐴𝑤𝐵 𝜓 )