Metamath Proof Explorer


Theorem cbvrex2v

Description: Change bound variables of double restricted universal quantification, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvrex2vw when possible. (Contributed by FL, 2-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cbvrex2v.1
|- ( x = z -> ( ph <-> ch ) )
cbvrex2v.2
|- ( y = w -> ( ch <-> ps ) )
Assertion cbvrex2v
|- ( E. x e. A E. y e. B ph <-> E. z e. A E. w e. B ps )

Proof

Step Hyp Ref Expression
1 cbvrex2v.1
 |-  ( x = z -> ( ph <-> ch ) )
2 cbvrex2v.2
 |-  ( y = w -> ( ch <-> ps ) )
3 1 rexbidv
 |-  ( x = z -> ( E. y e. B ph <-> E. y e. B ch ) )
4 3 cbvrexv
 |-  ( E. x e. A E. y e. B ph <-> E. z e. A E. y e. B ch )
5 2 cbvrexv
 |-  ( E. y e. B ch <-> E. w e. B ps )
6 5 rexbii
 |-  ( E. z e. A E. y e. B ch <-> E. z e. A E. w e. B ps )
7 4 6 bitri
 |-  ( E. x e. A E. y e. B ph <-> E. z e. A E. w e. B ps )