Description: Change bound variables of double restricted universal quantification, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvrex2vw when possible. (Contributed by FL, 2-Jul-2012) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbvrex2v.1 | |- ( x = z -> ( ph <-> ch ) ) |
|
cbvrex2v.2 | |- ( y = w -> ( ch <-> ps ) ) |
||
Assertion | cbvrex2v | |- ( E. x e. A E. y e. B ph <-> E. z e. A E. w e. B ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvrex2v.1 | |- ( x = z -> ( ph <-> ch ) ) |
|
2 | cbvrex2v.2 | |- ( y = w -> ( ch <-> ps ) ) |
|
3 | 1 | rexbidv | |- ( x = z -> ( E. y e. B ph <-> E. y e. B ch ) ) |
4 | 3 | cbvrexv | |- ( E. x e. A E. y e. B ph <-> E. z e. A E. y e. B ch ) |
5 | 2 | cbvrexv | |- ( E. y e. B ch <-> E. w e. B ps ) |
6 | 5 | rexbii | |- ( E. z e. A E. y e. B ch <-> E. z e. A E. w e. B ps ) |
7 | 4 6 | bitri | |- ( E. x e. A E. y e. B ph <-> E. z e. A E. w e. B ps ) |