Metamath Proof Explorer


Theorem cbvrex2

Description: Change bound variables of double restricted universal quantification, using implicit substitution, analogous to cbvrex2v . (Contributed by Alexander van der Vekens, 2-Jul-2017)

Ref Expression
Hypotheses cbvral2.1
|- F/ z ph
cbvral2.2
|- F/ x ch
cbvral2.3
|- F/ w ch
cbvral2.4
|- F/ y ps
cbvral2.5
|- ( x = z -> ( ph <-> ch ) )
cbvral2.6
|- ( y = w -> ( ch <-> ps ) )
Assertion cbvrex2
|- ( E. x e. A E. y e. B ph <-> E. z e. A E. w e. B ps )

Proof

Step Hyp Ref Expression
1 cbvral2.1
 |-  F/ z ph
2 cbvral2.2
 |-  F/ x ch
3 cbvral2.3
 |-  F/ w ch
4 cbvral2.4
 |-  F/ y ps
5 cbvral2.5
 |-  ( x = z -> ( ph <-> ch ) )
6 cbvral2.6
 |-  ( y = w -> ( ch <-> ps ) )
7 nfcv
 |-  F/_ z B
8 7 1 nfrex
 |-  F/ z E. y e. B ph
9 nfcv
 |-  F/_ x B
10 9 2 nfrex
 |-  F/ x E. y e. B ch
11 5 rexbidv
 |-  ( x = z -> ( E. y e. B ph <-> E. y e. B ch ) )
12 8 10 11 cbvrexw
 |-  ( E. x e. A E. y e. B ph <-> E. z e. A E. y e. B ch )
13 3 4 6 cbvrexw
 |-  ( E. y e. B ch <-> E. w e. B ps )
14 13 rexbii
 |-  ( E. z e. A E. y e. B ch <-> E. z e. A E. w e. B ps )
15 12 14 bitri
 |-  ( E. x e. A E. y e. B ph <-> E. z e. A E. w e. B ps )