| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvsbvf.1 |
⊢ Ⅎ 𝑦 𝜑 |
| 2 |
|
cbvsbvf.2 |
⊢ Ⅎ 𝑥 𝜓 |
| 3 |
|
cbvsbvf.3 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
| 4 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 = 𝑤 |
| 5 |
4 1
|
nfim |
⊢ Ⅎ 𝑦 ( 𝑥 = 𝑤 → 𝜑 ) |
| 6 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 = 𝑤 |
| 7 |
6 2
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑦 = 𝑤 → 𝜓 ) |
| 8 |
|
equequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑤 ↔ 𝑦 = 𝑤 ) ) |
| 9 |
8 3
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 = 𝑤 → 𝜑 ) ↔ ( 𝑦 = 𝑤 → 𝜓 ) ) ) |
| 10 |
5 7 9
|
cbvalv1 |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜓 ) ) |
| 11 |
10
|
imbi2i |
⊢ ( ( 𝑤 = 𝑧 → ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ) ↔ ( 𝑤 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜓 ) ) ) |
| 12 |
11
|
albii |
⊢ ( ∀ 𝑤 ( 𝑤 = 𝑧 → ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ) ↔ ∀ 𝑤 ( 𝑤 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜓 ) ) ) |
| 13 |
|
df-sb |
⊢ ( [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑤 ( 𝑤 = 𝑧 → ∀ 𝑥 ( 𝑥 = 𝑤 → 𝜑 ) ) ) |
| 14 |
|
df-sb |
⊢ ( [ 𝑧 / 𝑦 ] 𝜓 ↔ ∀ 𝑤 ( 𝑤 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜓 ) ) ) |
| 15 |
12 13 14
|
3bitr4i |
⊢ ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] 𝜓 ) |