| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( ♯ ‘ 𝐶 )  =  ( ♯ ‘ 𝐶 ) | 
						
							| 2 |  | ccatopth2 | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐶  ∈  Word  𝑋 )  ∧  ( 𝐵  ∈  Word  𝑋  ∧  𝐶  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐶 )  =  ( ♯ ‘ 𝐶 ) )  →  ( ( 𝐴  ++  𝐶 )  =  ( 𝐵  ++  𝐶 )  ↔  ( 𝐴  =  𝐵  ∧  𝐶  =  𝐶 ) ) ) | 
						
							| 3 | 1 2 | mp3an3 | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐶  ∈  Word  𝑋 )  ∧  ( 𝐵  ∈  Word  𝑋  ∧  𝐶  ∈  Word  𝑋 ) )  →  ( ( 𝐴  ++  𝐶 )  =  ( 𝐵  ++  𝐶 )  ↔  ( 𝐴  =  𝐵  ∧  𝐶  =  𝐶 ) ) ) | 
						
							| 4 | 3 | 3impdir | ⊢ ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋  ∧  𝐶  ∈  Word  𝑋 )  →  ( ( 𝐴  ++  𝐶 )  =  ( 𝐵  ++  𝐶 )  ↔  ( 𝐴  =  𝐵  ∧  𝐶  =  𝐶 ) ) ) | 
						
							| 5 |  | eqid | ⊢ 𝐶  =  𝐶 | 
						
							| 6 | 5 | biantru | ⊢ ( 𝐴  =  𝐵  ↔  ( 𝐴  =  𝐵  ∧  𝐶  =  𝐶 ) ) | 
						
							| 7 | 4 6 | bitr4di | ⊢ ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋  ∧  𝐶  ∈  Word  𝑋 )  →  ( ( 𝐴  ++  𝐶 )  =  ( 𝐵  ++  𝐶 )  ↔  𝐴  =  𝐵 ) ) |