| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 )  →  ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  =  ( ♯ ‘ ( 𝐶  ++  𝐷 ) ) ) | 
						
							| 2 |  | ccatlen | ⊢ ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  →  ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 3 | 2 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) )  →  ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 4 |  | simp3 | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) )  →  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) ) | 
						
							| 5 | 4 | oveq2d | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) )  →  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐷 ) ) ) | 
						
							| 6 | 3 5 | eqtrd | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) )  →  ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐷 ) ) ) | 
						
							| 7 |  | ccatlen | ⊢ ( ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  →  ( ♯ ‘ ( 𝐶  ++  𝐷 ) )  =  ( ( ♯ ‘ 𝐶 )  +  ( ♯ ‘ 𝐷 ) ) ) | 
						
							| 8 | 7 | 3ad2ant2 | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) )  →  ( ♯ ‘ ( 𝐶  ++  𝐷 ) )  =  ( ( ♯ ‘ 𝐶 )  +  ( ♯ ‘ 𝐷 ) ) ) | 
						
							| 9 | 6 8 | eqeq12d | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) )  →  ( ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  =  ( ♯ ‘ ( 𝐶  ++  𝐷 ) )  ↔  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐷 ) )  =  ( ( ♯ ‘ 𝐶 )  +  ( ♯ ‘ 𝐷 ) ) ) ) | 
						
							| 10 |  | simp1l | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) )  →  𝐴  ∈  Word  𝑋 ) | 
						
							| 11 |  | lencl | ⊢ ( 𝐴  ∈  Word  𝑋  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) )  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 13 | 12 | nn0cnd | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) )  →  ( ♯ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 14 |  | simp2l | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) )  →  𝐶  ∈  Word  𝑋 ) | 
						
							| 15 |  | lencl | ⊢ ( 𝐶  ∈  Word  𝑋  →  ( ♯ ‘ 𝐶 )  ∈  ℕ0 ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) )  →  ( ♯ ‘ 𝐶 )  ∈  ℕ0 ) | 
						
							| 17 | 16 | nn0cnd | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) )  →  ( ♯ ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 18 |  | simp2r | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) )  →  𝐷  ∈  Word  𝑋 ) | 
						
							| 19 |  | lencl | ⊢ ( 𝐷  ∈  Word  𝑋  →  ( ♯ ‘ 𝐷 )  ∈  ℕ0 ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) )  →  ( ♯ ‘ 𝐷 )  ∈  ℕ0 ) | 
						
							| 21 | 20 | nn0cnd | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) )  →  ( ♯ ‘ 𝐷 )  ∈  ℂ ) | 
						
							| 22 | 13 17 21 | addcan2d | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) )  →  ( ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐷 ) )  =  ( ( ♯ ‘ 𝐶 )  +  ( ♯ ‘ 𝐷 ) )  ↔  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) ) ) | 
						
							| 23 | 9 22 | bitrd | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) )  →  ( ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  =  ( ♯ ‘ ( 𝐶  ++  𝐷 ) )  ↔  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) ) ) | 
						
							| 24 | 1 23 | imbitrid | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) )  →  ( ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 )  →  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) ) ) | 
						
							| 25 |  | ccatopth | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) )  →  ( ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 )  ↔  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) | 
						
							| 26 | 25 | biimpd | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 ) )  →  ( ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) | 
						
							| 27 | 26 | 3expia | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 ) )  →  ( ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 )  →  ( ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) ) | 
						
							| 28 | 27 | com23 | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 ) )  →  ( ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 )  →  ( ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) ) | 
						
							| 29 | 28 | 3adant3 | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) )  →  ( ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 )  →  ( ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ 𝐶 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) ) | 
						
							| 30 | 24 29 | mpdd | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) )  →  ( ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 )  →  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) | 
						
							| 31 |  | oveq12 | ⊢ ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 )  →  ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 ) ) | 
						
							| 32 | 30 31 | impbid1 | ⊢ ( ( ( 𝐴  ∈  Word  𝑋  ∧  𝐵  ∈  Word  𝑋 )  ∧  ( 𝐶  ∈  Word  𝑋  ∧  𝐷  ∈  Word  𝑋 )  ∧  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ 𝐷 ) )  →  ( ( 𝐴  ++  𝐵 )  =  ( 𝐶  ++  𝐷 )  ↔  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐷 ) ) ) |