| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( ( A ++ B ) = ( C ++ D ) -> ( # ` ( A ++ B ) ) = ( # ` ( C ++ D ) ) ) | 
						
							| 2 |  | ccatlen |  |-  ( ( A e. Word X /\ B e. Word X ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) | 
						
							| 3 | 2 | 3ad2ant1 |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) | 
						
							| 4 |  | simp3 |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` B ) = ( # ` D ) ) | 
						
							| 5 | 4 | oveq2d |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( # ` A ) + ( # ` B ) ) = ( ( # ` A ) + ( # ` D ) ) ) | 
						
							| 6 | 3 5 | eqtrd |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` D ) ) ) | 
						
							| 7 |  | ccatlen |  |-  ( ( C e. Word X /\ D e. Word X ) -> ( # ` ( C ++ D ) ) = ( ( # ` C ) + ( # ` D ) ) ) | 
						
							| 8 | 7 | 3ad2ant2 |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` ( C ++ D ) ) = ( ( # ` C ) + ( # ` D ) ) ) | 
						
							| 9 | 6 8 | eqeq12d |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( # ` ( A ++ B ) ) = ( # ` ( C ++ D ) ) <-> ( ( # ` A ) + ( # ` D ) ) = ( ( # ` C ) + ( # ` D ) ) ) ) | 
						
							| 10 |  | simp1l |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> A e. Word X ) | 
						
							| 11 |  | lencl |  |-  ( A e. Word X -> ( # ` A ) e. NN0 ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` A ) e. NN0 ) | 
						
							| 13 | 12 | nn0cnd |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` A ) e. CC ) | 
						
							| 14 |  | simp2l |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> C e. Word X ) | 
						
							| 15 |  | lencl |  |-  ( C e. Word X -> ( # ` C ) e. NN0 ) | 
						
							| 16 | 14 15 | syl |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` C ) e. NN0 ) | 
						
							| 17 | 16 | nn0cnd |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` C ) e. CC ) | 
						
							| 18 |  | simp2r |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> D e. Word X ) | 
						
							| 19 |  | lencl |  |-  ( D e. Word X -> ( # ` D ) e. NN0 ) | 
						
							| 20 | 18 19 | syl |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` D ) e. NN0 ) | 
						
							| 21 | 20 | nn0cnd |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( # ` D ) e. CC ) | 
						
							| 22 | 13 17 21 | addcan2d |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( ( # ` A ) + ( # ` D ) ) = ( ( # ` C ) + ( # ` D ) ) <-> ( # ` A ) = ( # ` C ) ) ) | 
						
							| 23 | 9 22 | bitrd |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( # ` ( A ++ B ) ) = ( # ` ( C ++ D ) ) <-> ( # ` A ) = ( # ` C ) ) ) | 
						
							| 24 | 1 23 | imbitrid |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( A ++ B ) = ( C ++ D ) -> ( # ` A ) = ( # ` C ) ) ) | 
						
							| 25 |  | ccatopth |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) -> ( ( A ++ B ) = ( C ++ D ) <-> ( A = C /\ B = D ) ) ) | 
						
							| 26 | 25 | biimpd |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` A ) = ( # ` C ) ) -> ( ( A ++ B ) = ( C ++ D ) -> ( A = C /\ B = D ) ) ) | 
						
							| 27 | 26 | 3expia |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) ) -> ( ( # ` A ) = ( # ` C ) -> ( ( A ++ B ) = ( C ++ D ) -> ( A = C /\ B = D ) ) ) ) | 
						
							| 28 | 27 | com23 |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) ) -> ( ( A ++ B ) = ( C ++ D ) -> ( ( # ` A ) = ( # ` C ) -> ( A = C /\ B = D ) ) ) ) | 
						
							| 29 | 28 | 3adant3 |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( A ++ B ) = ( C ++ D ) -> ( ( # ` A ) = ( # ` C ) -> ( A = C /\ B = D ) ) ) ) | 
						
							| 30 | 24 29 | mpdd |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( A ++ B ) = ( C ++ D ) -> ( A = C /\ B = D ) ) ) | 
						
							| 31 |  | oveq12 |  |-  ( ( A = C /\ B = D ) -> ( A ++ B ) = ( C ++ D ) ) | 
						
							| 32 | 30 31 | impbid1 |  |-  ( ( ( A e. Word X /\ B e. Word X ) /\ ( C e. Word X /\ D e. Word X ) /\ ( # ` B ) = ( # ` D ) ) -> ( ( A ++ B ) = ( C ++ D ) <-> ( A = C /\ B = D ) ) ) |