| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( # ` C ) = ( # ` C ) | 
						
							| 2 |  | ccatopth |  |-  ( ( ( C e. Word X /\ A e. Word X ) /\ ( C e. Word X /\ B e. Word X ) /\ ( # ` C ) = ( # ` C ) ) -> ( ( C ++ A ) = ( C ++ B ) <-> ( C = C /\ A = B ) ) ) | 
						
							| 3 | 1 2 | mp3an3 |  |-  ( ( ( C e. Word X /\ A e. Word X ) /\ ( C e. Word X /\ B e. Word X ) ) -> ( ( C ++ A ) = ( C ++ B ) <-> ( C = C /\ A = B ) ) ) | 
						
							| 4 | 3 | 3impdi |  |-  ( ( C e. Word X /\ A e. Word X /\ B e. Word X ) -> ( ( C ++ A ) = ( C ++ B ) <-> ( C = C /\ A = B ) ) ) | 
						
							| 5 | 4 | 3coml |  |-  ( ( A e. Word X /\ B e. Word X /\ C e. Word X ) -> ( ( C ++ A ) = ( C ++ B ) <-> ( C = C /\ A = B ) ) ) | 
						
							| 6 |  | eqid |  |-  C = C | 
						
							| 7 | 6 | biantrur |  |-  ( A = B <-> ( C = C /\ A = B ) ) | 
						
							| 8 | 5 7 | bitr4di |  |-  ( ( A e. Word X /\ B e. Word X /\ C e. Word X ) -> ( ( C ++ A ) = ( C ++ B ) <-> A = B ) ) |