Metamath Proof Explorer


Theorem ccatws1cl

Description: The concatenation of a word with a singleton word is a word. (Contributed by Alexander van der Vekens, 22-Sep-2018)

Ref Expression
Assertion ccatws1cl ( ( 𝑊 ∈ Word 𝑉𝑋𝑉 ) → ( 𝑊 ++ ⟨“ 𝑋 ”⟩ ) ∈ Word 𝑉 )

Proof

Step Hyp Ref Expression
1 s1cl ( 𝑋𝑉 → ⟨“ 𝑋 ”⟩ ∈ Word 𝑉 )
2 ccatcl ( ( 𝑊 ∈ Word 𝑉 ∧ ⟨“ 𝑋 ”⟩ ∈ Word 𝑉 ) → ( 𝑊 ++ ⟨“ 𝑋 ”⟩ ) ∈ Word 𝑉 )
3 1 2 sylan2 ( ( 𝑊 ∈ Word 𝑉𝑋𝑉 ) → ( 𝑊 ++ ⟨“ 𝑋 ”⟩ ) ∈ Word 𝑉 )