Metamath Proof Explorer


Theorem cdleme21at

Description: Part of proof of Lemma E in Crawley p. 115. (Contributed by NM, 29-Nov-2012)

Ref Expression
Hypotheses cdleme21.l = ( le ‘ 𝐾 )
cdleme21.j = ( join ‘ 𝐾 )
cdleme21.m = ( meet ‘ 𝐾 )
cdleme21.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme21.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme21.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
Assertion cdleme21at ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → 𝑇𝑧 )

Proof

Step Hyp Ref Expression
1 cdleme21.l = ( le ‘ 𝐾 )
2 cdleme21.j = ( join ‘ 𝐾 )
3 cdleme21.m = ( meet ‘ 𝐾 )
4 cdleme21.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme21.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme21.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 1 2 3 4 5 6 cdleme21c ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → ¬ 𝑈 ( 𝑆 𝑧 ) )
8 7 3adant2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → ¬ 𝑈 ( 𝑆 𝑧 ) )
9 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → 𝑈 ( 𝑆 𝑇 ) )
10 oveq2 ( 𝑇 = 𝑧 → ( 𝑆 𝑇 ) = ( 𝑆 𝑧 ) )
11 10 breq2d ( 𝑇 = 𝑧 → ( 𝑈 ( 𝑆 𝑇 ) ↔ 𝑈 ( 𝑆 𝑧 ) ) )
12 9 11 syl5ibcom ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → ( 𝑇 = 𝑧𝑈 ( 𝑆 𝑧 ) ) )
13 12 necon3bd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → ( ¬ 𝑈 ( 𝑆 𝑧 ) → 𝑇𝑧 ) )
14 8 13 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ 𝑈 ( 𝑆 𝑇 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → 𝑇𝑧 )