Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdleme3fN
Metamath Proof Explorer
Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to
cdleme3fa and cdleme3 . TODO: Delete - duplicates cdleme0e .
(Contributed by NM , 6-Jun-2012) (New usage is discouraged.)
Ref
Expression
Hypotheses
cdleme1.l
⊢ ≤ = ( le ‘ 𝐾 )
cdleme1.j
⊢ ∨ = ( join ‘ 𝐾 )
cdleme1.m
⊢ ∧ = ( meet ‘ 𝐾 )
cdleme1.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
cdleme1.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
cdleme1.u
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 )
cdleme1.f
⊢ 𝐹 = ( ( 𝑅 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ) )
cdleme3.3
⊢ 𝑉 = ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 )
Assertion
cdleme3fN
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑈 ≠ 𝑉 )
Proof
Step
Hyp
Ref
Expression
1
cdleme1.l
⊢ ≤ = ( le ‘ 𝐾 )
2
cdleme1.j
⊢ ∨ = ( join ‘ 𝐾 )
3
cdleme1.m
⊢ ∧ = ( meet ‘ 𝐾 )
4
cdleme1.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
5
cdleme1.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
6
cdleme1.u
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 )
7
cdleme1.f
⊢ 𝐹 = ( ( 𝑅 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ) )
8
cdleme3.3
⊢ 𝑉 = ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 )
9
1 2 3 4 5 6 8
cdleme0e
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑈 ≠ 𝑉 )