Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme1.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdleme1.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdleme1.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdleme1.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdleme1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdleme1.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
7 |
|
cdleme1.f |
⊢ 𝐹 = ( ( 𝑅 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ) ) |
8 |
|
cdleme3.3 |
⊢ 𝑉 = ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) |
9 |
1 2 3 4 5 6 7 8
|
cdleme3d |
⊢ 𝐹 = ( ( 𝑅 ∨ 𝑈 ) ∧ ( 𝑄 ∨ 𝑉 ) ) |
10 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ HL ) |
11 |
10
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ Lat ) |
12 |
|
simp23l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑅 ∈ 𝐴 ) |
13 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
15 |
|
simp22l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑄 ∈ 𝐴 ) |
16 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ≠ 𝑄 ) |
17 |
1 2 3 4 5 6
|
lhpat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ) → 𝑈 ∈ 𝐴 ) |
18 |
13 14 15 16 17
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑈 ∈ 𝐴 ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
20 |
19 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑅 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
21 |
10 12 18 20
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
22 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
23 |
12 22
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
24 |
1 2 3 4 5 6 7 8
|
cdleme3e |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑉 ∈ 𝐴 ) |
25 |
13 14 15 23 24
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑉 ∈ 𝐴 ) |
26 |
19 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
27 |
10 15 25 26
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑄 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
28 |
19 1 3
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑅 ∨ 𝑈 ) ∧ ( 𝑄 ∨ 𝑉 ) ) ≤ ( 𝑄 ∨ 𝑉 ) ) |
29 |
11 21 27 28
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑅 ∨ 𝑈 ) ∧ ( 𝑄 ∨ 𝑉 ) ) ≤ ( 𝑄 ∨ 𝑉 ) ) |
30 |
9 29
|
eqbrtrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐹 ≤ ( 𝑄 ∨ 𝑉 ) ) |
31 |
|
simp22r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝑄 ≤ 𝑊 ) |
32 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
33 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
34 |
1 2 3 4 5 6 8
|
cdleme0e |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑈 ≠ 𝑉 ) |
35 |
13 14 15 32 33 34
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑈 ≠ 𝑉 ) |
36 |
1 2 4
|
hlatexch2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) ∧ 𝑈 ≠ 𝑉 ) → ( 𝑈 ≤ ( 𝑄 ∨ 𝑉 ) → 𝑄 ≤ ( 𝑈 ∨ 𝑉 ) ) ) |
37 |
10 18 15 25 35 36
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑈 ≤ ( 𝑄 ∨ 𝑉 ) → 𝑄 ≤ ( 𝑈 ∨ 𝑉 ) ) ) |
38 |
|
simp21l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ∈ 𝐴 ) |
39 |
19 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
40 |
10 38 15 39
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
41 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑊 ∈ 𝐻 ) |
42 |
19 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
43 |
41 42
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
44 |
19 1 3
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ≤ 𝑊 ) |
45 |
11 40 43 44
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ≤ 𝑊 ) |
46 |
6 45
|
eqbrtrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑈 ≤ 𝑊 ) |
47 |
19 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
48 |
10 38 12 47
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
49 |
19 1 3
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ≤ 𝑊 ) |
50 |
11 48 43 49
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ≤ 𝑊 ) |
51 |
8 50
|
eqbrtrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑉 ≤ 𝑊 ) |
52 |
19 4
|
atbase |
⊢ ( 𝑈 ∈ 𝐴 → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
53 |
18 52
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
54 |
19 4
|
atbase |
⊢ ( 𝑉 ∈ 𝐴 → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
55 |
25 54
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
56 |
19 1 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑈 ≤ 𝑊 ∧ 𝑉 ≤ 𝑊 ) ↔ ( 𝑈 ∨ 𝑉 ) ≤ 𝑊 ) ) |
57 |
11 53 55 43 56
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑈 ≤ 𝑊 ∧ 𝑉 ≤ 𝑊 ) ↔ ( 𝑈 ∨ 𝑉 ) ≤ 𝑊 ) ) |
58 |
46 51 57
|
mpbi2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑈 ∨ 𝑉 ) ≤ 𝑊 ) |
59 |
19 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
60 |
15 59
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
61 |
19 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) → ( 𝑈 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
62 |
10 18 25 61
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑈 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ) |
63 |
19 1
|
lattr |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑈 ∨ 𝑉 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑄 ≤ ( 𝑈 ∨ 𝑉 ) ∧ ( 𝑈 ∨ 𝑉 ) ≤ 𝑊 ) → 𝑄 ≤ 𝑊 ) ) |
64 |
11 60 62 43 63
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑄 ≤ ( 𝑈 ∨ 𝑉 ) ∧ ( 𝑈 ∨ 𝑉 ) ≤ 𝑊 ) → 𝑄 ≤ 𝑊 ) ) |
65 |
58 64
|
mpan2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑄 ≤ ( 𝑈 ∨ 𝑉 ) → 𝑄 ≤ 𝑊 ) ) |
66 |
37 65
|
syld |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑈 ≤ ( 𝑄 ∨ 𝑉 ) → 𝑄 ≤ 𝑊 ) ) |
67 |
31 66
|
mtod |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝑈 ≤ ( 𝑄 ∨ 𝑉 ) ) |
68 |
|
nbrne2 |
⊢ ( ( 𝐹 ≤ ( 𝑄 ∨ 𝑉 ) ∧ ¬ 𝑈 ≤ ( 𝑄 ∨ 𝑉 ) ) → 𝐹 ≠ 𝑈 ) |
69 |
30 67 68
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐹 ≠ 𝑈 ) |