Metamath Proof Explorer


Theorem cdlemg41

Description: Convert cdlemg40 to function composition. TODO: Fix comment. (Contributed by NM, 31-May-2013)

Ref Expression
Hypotheses cdlemg35.l = ( le ‘ 𝐾 )
cdlemg35.j = ( join ‘ 𝐾 )
cdlemg35.m = ( meet ‘ 𝐾 )
cdlemg35.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg35.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg35.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg41 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( ( 𝑃 ( ( 𝐹𝐺 ) ‘ 𝑃 ) ) 𝑊 ) = ( ( 𝑄 ( ( 𝐹𝐺 ) ‘ 𝑄 ) ) 𝑊 ) )

Proof

Step Hyp Ref Expression
1 cdlemg35.l = ( le ‘ 𝐾 )
2 cdlemg35.j = ( join ‘ 𝐾 )
3 cdlemg35.m = ( meet ‘ 𝐾 )
4 cdlemg35.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg35.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg35.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 1 2 3 4 5 6 cdlemg40 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
8 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 simp3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( 𝐹𝑇𝐺𝑇 ) )
10 simp2ll ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → 𝑃𝐴 )
11 1 4 5 6 ltrncoval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝐴 ) → ( ( 𝐹𝐺 ) ‘ 𝑃 ) = ( 𝐹 ‘ ( 𝐺𝑃 ) ) )
12 8 9 10 11 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( ( 𝐹𝐺 ) ‘ 𝑃 ) = ( 𝐹 ‘ ( 𝐺𝑃 ) ) )
13 12 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( 𝑃 ( ( 𝐹𝐺 ) ‘ 𝑃 ) ) = ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) )
14 13 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( ( 𝑃 ( ( 𝐹𝐺 ) ‘ 𝑃 ) ) 𝑊 ) = ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) )
15 simp2rl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → 𝑄𝐴 )
16 1 4 5 6 ltrncoval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑄𝐴 ) → ( ( 𝐹𝐺 ) ‘ 𝑄 ) = ( 𝐹 ‘ ( 𝐺𝑄 ) ) )
17 8 9 15 16 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( ( 𝐹𝐺 ) ‘ 𝑄 ) = ( 𝐹 ‘ ( 𝐺𝑄 ) ) )
18 17 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( 𝑄 ( ( 𝐹𝐺 ) ‘ 𝑄 ) ) = ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) )
19 18 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( ( 𝑄 ( ( 𝐹𝐺 ) ‘ 𝑄 ) ) 𝑊 ) = ( ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) 𝑊 ) )
20 7 14 19 3eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ) ) → ( ( 𝑃 ( ( 𝐹𝐺 ) ‘ 𝑃 ) ) 𝑊 ) = ( ( 𝑄 ( ( 𝐹𝐺 ) ‘ 𝑄 ) ) 𝑊 ) )