Step |
Hyp |
Ref |
Expression |
1 |
|
metuval |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( metUnif ‘ 𝐷 ) = ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ) |
2 |
1
|
adantl |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( metUnif ‘ 𝐷 ) = ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ) |
3 |
2
|
fveq2d |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) = ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ) ) |
4 |
3
|
eleq2d |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ↔ 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 0 [,) 𝑎 ) = ( 0 [,) 𝑏 ) ) |
6 |
5
|
imaeq2d |
⊢ ( 𝑎 = 𝑏 → ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) = ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
7 |
6
|
cbvmptv |
⊢ ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) = ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
8 |
7
|
rneqi |
⊢ ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) = ran ( 𝑏 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑏 ) ) ) |
9 |
8
|
cfilucfil |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝐶 ∈ ( CauFilu ‘ ( ( 𝑋 × 𝑋 ) filGen ran ( 𝑎 ∈ ℝ+ ↦ ( ◡ 𝐷 “ ( 0 [,) 𝑎 ) ) ) ) ) ↔ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) |
10 |
4 9
|
bitrd |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝐶 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ↔ ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐶 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) |