Metamath Proof Explorer


Theorem cfsetsnfsetf1o

Description: The mapping of the class of singleton functions into the class of constant functions is a bijection. (Contributed by AV, 14-Sep-2024)

Ref Expression
Hypotheses cfsetsnfsetfv.f 𝐹 = { 𝑓 ∣ ( 𝑓 : 𝐴𝐵 ∧ ∃ 𝑏𝐵𝑧𝐴 ( 𝑓𝑧 ) = 𝑏 ) }
cfsetsnfsetfv.g 𝐺 = { 𝑥𝑥 : { 𝑌 } ⟶ 𝐵 }
cfsetsnfsetfv.h 𝐻 = ( 𝑔𝐺 ↦ ( 𝑎𝐴 ↦ ( 𝑔𝑌 ) ) )
Assertion cfsetsnfsetf1o ( ( 𝐴𝑉𝑌𝐴 ) → 𝐻 : 𝐺1-1-onto𝐹 )

Proof

Step Hyp Ref Expression
1 cfsetsnfsetfv.f 𝐹 = { 𝑓 ∣ ( 𝑓 : 𝐴𝐵 ∧ ∃ 𝑏𝐵𝑧𝐴 ( 𝑓𝑧 ) = 𝑏 ) }
2 cfsetsnfsetfv.g 𝐺 = { 𝑥𝑥 : { 𝑌 } ⟶ 𝐵 }
3 cfsetsnfsetfv.h 𝐻 = ( 𝑔𝐺 ↦ ( 𝑎𝐴 ↦ ( 𝑔𝑌 ) ) )
4 1 2 3 cfsetsnfsetf1 ( ( 𝐴𝑉𝑌𝐴 ) → 𝐻 : 𝐺1-1𝐹 )
5 1 2 3 cfsetsnfsetfo ( ( 𝐴𝑉𝑌𝐴 ) → 𝐻 : 𝐺onto𝐹 )
6 df-f1o ( 𝐻 : 𝐺1-1-onto𝐹 ↔ ( 𝐻 : 𝐺1-1𝐹𝐻 : 𝐺onto𝐹 ) )
7 4 5 6 sylanbrc ( ( 𝐴𝑉𝑌𝐴 ) → 𝐻 : 𝐺1-1-onto𝐹 )