Description: The mapping of the class of singleton functions into the class of constant functions is a bijection. (Contributed by AV, 14-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cfsetsnfsetfv.f | ⊢ 𝐹 = { 𝑓 ∣ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∃ 𝑏 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( 𝑓 ‘ 𝑧 ) = 𝑏 ) } | |
cfsetsnfsetfv.g | ⊢ 𝐺 = { 𝑥 ∣ 𝑥 : { 𝑌 } ⟶ 𝐵 } | ||
cfsetsnfsetfv.h | ⊢ 𝐻 = ( 𝑔 ∈ 𝐺 ↦ ( 𝑎 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑌 ) ) ) | ||
Assertion | cfsetsnfsetf1o | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴 ) → 𝐻 : 𝐺 –1-1-onto→ 𝐹 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfsetsnfsetfv.f | ⊢ 𝐹 = { 𝑓 ∣ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∃ 𝑏 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( 𝑓 ‘ 𝑧 ) = 𝑏 ) } | |
2 | cfsetsnfsetfv.g | ⊢ 𝐺 = { 𝑥 ∣ 𝑥 : { 𝑌 } ⟶ 𝐵 } | |
3 | cfsetsnfsetfv.h | ⊢ 𝐻 = ( 𝑔 ∈ 𝐺 ↦ ( 𝑎 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑌 ) ) ) | |
4 | 1 2 3 | cfsetsnfsetf1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴 ) → 𝐻 : 𝐺 –1-1→ 𝐹 ) |
5 | 1 2 3 | cfsetsnfsetfo | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴 ) → 𝐻 : 𝐺 –onto→ 𝐹 ) |
6 | df-f1o | ⊢ ( 𝐻 : 𝐺 –1-1-onto→ 𝐹 ↔ ( 𝐻 : 𝐺 –1-1→ 𝐹 ∧ 𝐻 : 𝐺 –onto→ 𝐹 ) ) | |
7 | 4 5 6 | sylanbrc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴 ) → 𝐻 : 𝐺 –1-1-onto→ 𝐹 ) |