Metamath Proof Explorer


Theorem cfsetsnfsetf1o

Description: The mapping of the class of singleton functions into the class of constant functions is a bijection. (Contributed by AV, 14-Sep-2024)

Ref Expression
Hypotheses cfsetsnfsetfv.f F = f | f : A B b B z A f z = b
cfsetsnfsetfv.g G = x | x : Y B
cfsetsnfsetfv.h H = g G a A g Y
Assertion cfsetsnfsetf1o A V Y A H : G 1-1 onto F

Proof

Step Hyp Ref Expression
1 cfsetsnfsetfv.f F = f | f : A B b B z A f z = b
2 cfsetsnfsetfv.g G = x | x : Y B
3 cfsetsnfsetfv.h H = g G a A g Y
4 1 2 3 cfsetsnfsetf1 A V Y A H : G 1-1 F
5 1 2 3 cfsetsnfsetfo A V Y A H : G onto F
6 df-f1o H : G 1-1 onto F H : G 1-1 F H : G onto F
7 4 5 6 sylanbrc A V Y A H : G 1-1 onto F