Metamath Proof Explorer


Theorem cfsetsnfsetf1o

Description: The mapping of the class of singleton functions into the class of constant functions is a bijection. (Contributed by AV, 14-Sep-2024)

Ref Expression
Hypotheses cfsetsnfsetfv.f F=f|f:ABbBzAfz=b
cfsetsnfsetfv.g G=x|x:YB
cfsetsnfsetfv.h H=gGaAgY
Assertion cfsetsnfsetf1o AVYAH:G1-1 ontoF

Proof

Step Hyp Ref Expression
1 cfsetsnfsetfv.f F=f|f:ABbBzAfz=b
2 cfsetsnfsetfv.g G=x|x:YB
3 cfsetsnfsetfv.h H=gGaAgY
4 1 2 3 cfsetsnfsetf1 AVYAH:G1-1F
5 1 2 3 cfsetsnfsetfo AVYAH:GontoF
6 df-f1o H:G1-1 ontoFH:G1-1FH:GontoF
7 4 5 6 sylanbrc AVYAH:G1-1 ontoF