Metamath Proof Explorer


Theorem fsetprcnexALT

Description: First version of proof for fsetprcnex , which was much more complicated. (Contributed by AV, 14-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion fsetprcnexALT A V A B V f | f : A B V

Proof

Step Hyp Ref Expression
1 abanssl f | f : A B b B z A f z = b f | f : A B
2 n0 A y y A
3 vex y V
4 3 a1i y A A V y V
5 fsetsnprcnex y V B V f | f : y B V
6 4 5 sylan y A A V B V f | f : y B V
7 df-nel f | f : y B V ¬ f | f : y B V
8 6 7 sylib y A A V B V ¬ f | f : y B V
9 eqid f | f : A B b B z A f z = b = f | f : A B b B z A f z = b
10 eqid f | f : y B = f | f : y B
11 eqid g f | f : y B a A g y = g f | f : y B a A g y
12 9 10 11 cfsetsnfsetf1o A V y A g f | f : y B a A g y : f | f : y B 1-1 onto f | f : A B b B z A f z = b
13 12 ancoms y A A V g f | f : y B a A g y : f | f : y B 1-1 onto f | f : A B b B z A f z = b
14 13 adantr y A A V B V g f | f : y B a A g y : f | f : y B 1-1 onto f | f : A B b B z A f z = b
15 f1ovv g f | f : y B a A g y : f | f : y B 1-1 onto f | f : A B b B z A f z = b f | f : y B V f | f : A B b B z A f z = b V
16 15 bicomd g f | f : y B a A g y : f | f : y B 1-1 onto f | f : A B b B z A f z = b f | f : A B b B z A f z = b V f | f : y B V
17 14 16 syl y A A V B V f | f : A B b B z A f z = b V f | f : y B V
18 8 17 mtbird y A A V B V ¬ f | f : A B b B z A f z = b V
19 18 exp31 y A A V B V ¬ f | f : A B b B z A f z = b V
20 19 exlimiv y y A A V B V ¬ f | f : A B b B z A f z = b V
21 2 20 sylbi A A V B V ¬ f | f : A B b B z A f z = b V
22 21 impcom A V A B V ¬ f | f : A B b B z A f z = b V
23 22 imp A V A B V ¬ f | f : A B b B z A f z = b V
24 df-nel f | f : A B b B z A f z = b V ¬ f | f : A B b B z A f z = b V
25 23 24 sylibr A V A B V f | f : A B b B z A f z = b V
26 prcssprc f | f : A B b B z A f z = b f | f : A B f | f : A B b B z A f z = b V f | f : A B V
27 1 25 26 sylancr A V A B V f | f : A B V