Metamath Proof Explorer


Theorem fsetsnprcnex

Description: The class of all functions from a (proper) singleton into a proper class B is not a set. (Contributed by AV, 13-Sep-2024)

Ref Expression
Assertion fsetsnprcnex S V B V f | f : S B V

Proof

Step Hyp Ref Expression
1 eqid y | b B y = S b = y | b B y = S b
2 eqid x B S x = x B S x
3 1 2 fsetsnf1o S V x B S x : B 1-1 onto y | b B y = S b
4 f1ovv x B S x : B 1-1 onto y | b B y = S b B V y | b B y = S b V
5 3 4 syl S V B V y | b B y = S b V
6 5 notbid S V ¬ B V ¬ y | b B y = S b V
7 df-nel B V ¬ B V
8 df-nel y | b B y = S b V ¬ y | b B y = S b V
9 6 7 8 3bitr4g S V B V y | b B y = S b V
10 9 biimpa S V B V y | b B y = S b V
11 fsetabsnop S V f | f : S B = y | b B y = S b
12 11 adantr S V B V f | f : S B = y | b B y = S b
13 eqidd S V B V V = V
14 12 13 neleq12d S V B V f | f : S B V y | b B y = S b V
15 10 14 mpbird S V B V f | f : S B V