Metamath Proof Explorer


Theorem fsetsnprcnex

Description: The class of all functions from a (proper) singleton into a proper class B is not a set. (Contributed by AV, 13-Sep-2024)

Ref Expression
Assertion fsetsnprcnex
|- ( ( S e. V /\ B e/ _V ) -> { f | f : { S } --> B } e/ _V )

Proof

Step Hyp Ref Expression
1 eqid
 |-  { y | E. b e. B y = { <. S , b >. } } = { y | E. b e. B y = { <. S , b >. } }
2 eqid
 |-  ( x e. B |-> { <. S , x >. } ) = ( x e. B |-> { <. S , x >. } )
3 1 2 fsetsnf1o
 |-  ( S e. V -> ( x e. B |-> { <. S , x >. } ) : B -1-1-onto-> { y | E. b e. B y = { <. S , b >. } } )
4 f1ovv
 |-  ( ( x e. B |-> { <. S , x >. } ) : B -1-1-onto-> { y | E. b e. B y = { <. S , b >. } } -> ( B e. _V <-> { y | E. b e. B y = { <. S , b >. } } e. _V ) )
5 3 4 syl
 |-  ( S e. V -> ( B e. _V <-> { y | E. b e. B y = { <. S , b >. } } e. _V ) )
6 5 notbid
 |-  ( S e. V -> ( -. B e. _V <-> -. { y | E. b e. B y = { <. S , b >. } } e. _V ) )
7 df-nel
 |-  ( B e/ _V <-> -. B e. _V )
8 df-nel
 |-  ( { y | E. b e. B y = { <. S , b >. } } e/ _V <-> -. { y | E. b e. B y = { <. S , b >. } } e. _V )
9 6 7 8 3bitr4g
 |-  ( S e. V -> ( B e/ _V <-> { y | E. b e. B y = { <. S , b >. } } e/ _V ) )
10 9 biimpa
 |-  ( ( S e. V /\ B e/ _V ) -> { y | E. b e. B y = { <. S , b >. } } e/ _V )
11 fsetabsnop
 |-  ( S e. V -> { f | f : { S } --> B } = { y | E. b e. B y = { <. S , b >. } } )
12 11 adantr
 |-  ( ( S e. V /\ B e/ _V ) -> { f | f : { S } --> B } = { y | E. b e. B y = { <. S , b >. } } )
13 eqidd
 |-  ( ( S e. V /\ B e/ _V ) -> _V = _V )
14 12 13 neleq12d
 |-  ( ( S e. V /\ B e/ _V ) -> ( { f | f : { S } --> B } e/ _V <-> { y | E. b e. B y = { <. S , b >. } } e/ _V ) )
15 10 14 mpbird
 |-  ( ( S e. V /\ B e/ _V ) -> { f | f : { S } --> B } e/ _V )