Description: The mapping of an element of a class to a singleton function is a bijection. (Contributed by AV, 13-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsetsnf.a | |- A = { y | E. b e. B y = { <. S , b >. } } |
|
| fsetsnf.f | |- F = ( x e. B |-> { <. S , x >. } ) |
||
| Assertion | fsetsnf1o | |- ( S e. V -> F : B -1-1-onto-> A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsetsnf.a | |- A = { y | E. b e. B y = { <. S , b >. } } |
|
| 2 | fsetsnf.f | |- F = ( x e. B |-> { <. S , x >. } ) |
|
| 3 | 1 2 | fsetsnf1 | |- ( S e. V -> F : B -1-1-> A ) |
| 4 | 1 2 | fsetsnfo | |- ( S e. V -> F : B -onto-> A ) |
| 5 | df-f1o | |- ( F : B -1-1-onto-> A <-> ( F : B -1-1-> A /\ F : B -onto-> A ) ) |
|
| 6 | 3 4 5 | sylanbrc | |- ( S e. V -> F : B -1-1-onto-> A ) |