Metamath Proof Explorer


Theorem fsetsnf1o

Description: The mapping of an element of a class to a singleton function is a bijection. (Contributed by AV, 13-Sep-2024)

Ref Expression
Hypotheses fsetsnf.a
|- A = { y | E. b e. B y = { <. S , b >. } }
fsetsnf.f
|- F = ( x e. B |-> { <. S , x >. } )
Assertion fsetsnf1o
|- ( S e. V -> F : B -1-1-onto-> A )

Proof

Step Hyp Ref Expression
1 fsetsnf.a
 |-  A = { y | E. b e. B y = { <. S , b >. } }
2 fsetsnf.f
 |-  F = ( x e. B |-> { <. S , x >. } )
3 1 2 fsetsnf1
 |-  ( S e. V -> F : B -1-1-> A )
4 1 2 fsetsnfo
 |-  ( S e. V -> F : B -onto-> A )
5 df-f1o
 |-  ( F : B -1-1-onto-> A <-> ( F : B -1-1-> A /\ F : B -onto-> A ) )
6 3 4 5 sylanbrc
 |-  ( S e. V -> F : B -1-1-onto-> A )