Description: The mapping of an element of a class to a singleton function is a bijection. (Contributed by AV, 13-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsetsnf.a | ⊢ 𝐴 = { 𝑦 ∣ ∃ 𝑏 ∈ 𝐵 𝑦 = { 〈 𝑆 , 𝑏 〉 } } | |
fsetsnf.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ { 〈 𝑆 , 𝑥 〉 } ) | ||
Assertion | fsetsnf1o | ⊢ ( 𝑆 ∈ 𝑉 → 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsetsnf.a | ⊢ 𝐴 = { 𝑦 ∣ ∃ 𝑏 ∈ 𝐵 𝑦 = { 〈 𝑆 , 𝑏 〉 } } | |
2 | fsetsnf.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ { 〈 𝑆 , 𝑥 〉 } ) | |
3 | 1 2 | fsetsnf1 | ⊢ ( 𝑆 ∈ 𝑉 → 𝐹 : 𝐵 –1-1→ 𝐴 ) |
4 | 1 2 | fsetsnfo | ⊢ ( 𝑆 ∈ 𝑉 → 𝐹 : 𝐵 –onto→ 𝐴 ) |
5 | df-f1o | ⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐴 ↔ ( 𝐹 : 𝐵 –1-1→ 𝐴 ∧ 𝐹 : 𝐵 –onto→ 𝐴 ) ) | |
6 | 3 4 5 | sylanbrc | ⊢ ( 𝑆 ∈ 𝑉 → 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) |