Metamath Proof Explorer


Theorem fsetsnf1o

Description: The mapping of an element of a class to a singleton function is a bijection. (Contributed by AV, 13-Sep-2024)

Ref Expression
Hypotheses fsetsnf.a 𝐴 = { 𝑦 ∣ ∃ 𝑏𝐵 𝑦 = { ⟨ 𝑆 , 𝑏 ⟩ } }
fsetsnf.f 𝐹 = ( 𝑥𝐵 ↦ { ⟨ 𝑆 , 𝑥 ⟩ } )
Assertion fsetsnf1o ( 𝑆𝑉𝐹 : 𝐵1-1-onto𝐴 )

Proof

Step Hyp Ref Expression
1 fsetsnf.a 𝐴 = { 𝑦 ∣ ∃ 𝑏𝐵 𝑦 = { ⟨ 𝑆 , 𝑏 ⟩ } }
2 fsetsnf.f 𝐹 = ( 𝑥𝐵 ↦ { ⟨ 𝑆 , 𝑥 ⟩ } )
3 1 2 fsetsnf1 ( 𝑆𝑉𝐹 : 𝐵1-1𝐴 )
4 1 2 fsetsnfo ( 𝑆𝑉𝐹 : 𝐵onto𝐴 )
5 df-f1o ( 𝐹 : 𝐵1-1-onto𝐴 ↔ ( 𝐹 : 𝐵1-1𝐴𝐹 : 𝐵onto𝐴 ) )
6 3 4 5 sylanbrc ( 𝑆𝑉𝐹 : 𝐵1-1-onto𝐴 )