Metamath Proof Explorer


Theorem fsetsnprcnex

Description: The class of all functions from a (proper) singleton into a proper class B is not a set. (Contributed by AV, 13-Sep-2024)

Ref Expression
Assertion fsetsnprcnex ( ( 𝑆𝑉𝐵 ∉ V ) → { 𝑓𝑓 : { 𝑆 } ⟶ 𝐵 } ∉ V )

Proof

Step Hyp Ref Expression
1 eqid { 𝑦 ∣ ∃ 𝑏𝐵 𝑦 = { ⟨ 𝑆 , 𝑏 ⟩ } } = { 𝑦 ∣ ∃ 𝑏𝐵 𝑦 = { ⟨ 𝑆 , 𝑏 ⟩ } }
2 eqid ( 𝑥𝐵 ↦ { ⟨ 𝑆 , 𝑥 ⟩ } ) = ( 𝑥𝐵 ↦ { ⟨ 𝑆 , 𝑥 ⟩ } )
3 1 2 fsetsnf1o ( 𝑆𝑉 → ( 𝑥𝐵 ↦ { ⟨ 𝑆 , 𝑥 ⟩ } ) : 𝐵1-1-onto→ { 𝑦 ∣ ∃ 𝑏𝐵 𝑦 = { ⟨ 𝑆 , 𝑏 ⟩ } } )
4 f1ovv ( ( 𝑥𝐵 ↦ { ⟨ 𝑆 , 𝑥 ⟩ } ) : 𝐵1-1-onto→ { 𝑦 ∣ ∃ 𝑏𝐵 𝑦 = { ⟨ 𝑆 , 𝑏 ⟩ } } → ( 𝐵 ∈ V ↔ { 𝑦 ∣ ∃ 𝑏𝐵 𝑦 = { ⟨ 𝑆 , 𝑏 ⟩ } } ∈ V ) )
5 3 4 syl ( 𝑆𝑉 → ( 𝐵 ∈ V ↔ { 𝑦 ∣ ∃ 𝑏𝐵 𝑦 = { ⟨ 𝑆 , 𝑏 ⟩ } } ∈ V ) )
6 5 notbid ( 𝑆𝑉 → ( ¬ 𝐵 ∈ V ↔ ¬ { 𝑦 ∣ ∃ 𝑏𝐵 𝑦 = { ⟨ 𝑆 , 𝑏 ⟩ } } ∈ V ) )
7 df-nel ( 𝐵 ∉ V ↔ ¬ 𝐵 ∈ V )
8 df-nel ( { 𝑦 ∣ ∃ 𝑏𝐵 𝑦 = { ⟨ 𝑆 , 𝑏 ⟩ } } ∉ V ↔ ¬ { 𝑦 ∣ ∃ 𝑏𝐵 𝑦 = { ⟨ 𝑆 , 𝑏 ⟩ } } ∈ V )
9 6 7 8 3bitr4g ( 𝑆𝑉 → ( 𝐵 ∉ V ↔ { 𝑦 ∣ ∃ 𝑏𝐵 𝑦 = { ⟨ 𝑆 , 𝑏 ⟩ } } ∉ V ) )
10 9 biimpa ( ( 𝑆𝑉𝐵 ∉ V ) → { 𝑦 ∣ ∃ 𝑏𝐵 𝑦 = { ⟨ 𝑆 , 𝑏 ⟩ } } ∉ V )
11 fsetabsnop ( 𝑆𝑉 → { 𝑓𝑓 : { 𝑆 } ⟶ 𝐵 } = { 𝑦 ∣ ∃ 𝑏𝐵 𝑦 = { ⟨ 𝑆 , 𝑏 ⟩ } } )
12 11 adantr ( ( 𝑆𝑉𝐵 ∉ V ) → { 𝑓𝑓 : { 𝑆 } ⟶ 𝐵 } = { 𝑦 ∣ ∃ 𝑏𝐵 𝑦 = { ⟨ 𝑆 , 𝑏 ⟩ } } )
13 eqidd ( ( 𝑆𝑉𝐵 ∉ V ) → V = V )
14 12 13 neleq12d ( ( 𝑆𝑉𝐵 ∉ V ) → ( { 𝑓𝑓 : { 𝑆 } ⟶ 𝐵 } ∉ V ↔ { 𝑦 ∣ ∃ 𝑏𝐵 𝑦 = { ⟨ 𝑆 , 𝑏 ⟩ } } ∉ V ) )
15 10 14 mpbird ( ( 𝑆𝑉𝐵 ∉ V ) → { 𝑓𝑓 : { 𝑆 } ⟶ 𝐵 } ∉ V )