Description: The class of constant functions is a subclass of the class of functions. (Contributed by AV, 13-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cfsetsnfsetfv.f | ⊢ 𝐹 = { 𝑓 ∣ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∃ 𝑏 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( 𝑓 ‘ 𝑧 ) = 𝑏 ) } | |
Assertion | cfsetssfset | ⊢ 𝐹 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfsetsnfsetfv.f | ⊢ 𝐹 = { 𝑓 ∣ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∃ 𝑏 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( 𝑓 ‘ 𝑧 ) = 𝑏 ) } | |
2 | ss2ab | ⊢ ( { 𝑓 ∣ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∃ 𝑏 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( 𝑓 ‘ 𝑧 ) = 𝑏 ) } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ↔ ∀ 𝑓 ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∃ 𝑏 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( 𝑓 ‘ 𝑧 ) = 𝑏 ) → 𝑓 : 𝐴 ⟶ 𝐵 ) ) | |
3 | simpl | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∃ 𝑏 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( 𝑓 ‘ 𝑧 ) = 𝑏 ) → 𝑓 : 𝐴 ⟶ 𝐵 ) | |
4 | 2 3 | mpgbir | ⊢ { 𝑓 ∣ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∃ 𝑏 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( 𝑓 ‘ 𝑧 ) = 𝑏 ) } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } |
5 | 1 4 | eqsstri | ⊢ 𝐹 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } |