Metamath Proof Explorer


Theorem cfsetssfset

Description: The class of constant functions is a subclass of the class of functions. (Contributed by AV, 13-Sep-2024)

Ref Expression
Hypothesis cfsetsnfsetfv.f 𝐹 = { 𝑓 ∣ ( 𝑓 : 𝐴𝐵 ∧ ∃ 𝑏𝐵𝑧𝐴 ( 𝑓𝑧 ) = 𝑏 ) }
Assertion cfsetssfset 𝐹 ⊆ { 𝑓𝑓 : 𝐴𝐵 }

Proof

Step Hyp Ref Expression
1 cfsetsnfsetfv.f 𝐹 = { 𝑓 ∣ ( 𝑓 : 𝐴𝐵 ∧ ∃ 𝑏𝐵𝑧𝐴 ( 𝑓𝑧 ) = 𝑏 ) }
2 ss2ab ( { 𝑓 ∣ ( 𝑓 : 𝐴𝐵 ∧ ∃ 𝑏𝐵𝑧𝐴 ( 𝑓𝑧 ) = 𝑏 ) } ⊆ { 𝑓𝑓 : 𝐴𝐵 } ↔ ∀ 𝑓 ( ( 𝑓 : 𝐴𝐵 ∧ ∃ 𝑏𝐵𝑧𝐴 ( 𝑓𝑧 ) = 𝑏 ) → 𝑓 : 𝐴𝐵 ) )
3 simpl ( ( 𝑓 : 𝐴𝐵 ∧ ∃ 𝑏𝐵𝑧𝐴 ( 𝑓𝑧 ) = 𝑏 ) → 𝑓 : 𝐴𝐵 )
4 2 3 mpgbir { 𝑓 ∣ ( 𝑓 : 𝐴𝐵 ∧ ∃ 𝑏𝐵𝑧𝐴 ( 𝑓𝑧 ) = 𝑏 ) } ⊆ { 𝑓𝑓 : 𝐴𝐵 }
5 1 4 eqsstri 𝐹 ⊆ { 𝑓𝑓 : 𝐴𝐵 }