Metamath Proof Explorer


Theorem cfsetsnfsetfv

Description: The function value of the mapping of the class of singleton functions into the class of constant functions. (Contributed by AV, 13-Sep-2024)

Ref Expression
Hypotheses cfsetsnfsetfv.f 𝐹 = { 𝑓 ∣ ( 𝑓 : 𝐴𝐵 ∧ ∃ 𝑏𝐵𝑧𝐴 ( 𝑓𝑧 ) = 𝑏 ) }
cfsetsnfsetfv.g 𝐺 = { 𝑥𝑥 : { 𝑌 } ⟶ 𝐵 }
cfsetsnfsetfv.h 𝐻 = ( 𝑔𝐺 ↦ ( 𝑎𝐴 ↦ ( 𝑔𝑌 ) ) )
Assertion cfsetsnfsetfv ( ( 𝐴𝑉𝑋𝐺 ) → ( 𝐻𝑋 ) = ( 𝑎𝐴 ↦ ( 𝑋𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 cfsetsnfsetfv.f 𝐹 = { 𝑓 ∣ ( 𝑓 : 𝐴𝐵 ∧ ∃ 𝑏𝐵𝑧𝐴 ( 𝑓𝑧 ) = 𝑏 ) }
2 cfsetsnfsetfv.g 𝐺 = { 𝑥𝑥 : { 𝑌 } ⟶ 𝐵 }
3 cfsetsnfsetfv.h 𝐻 = ( 𝑔𝐺 ↦ ( 𝑎𝐴 ↦ ( 𝑔𝑌 ) ) )
4 3 a1i ( ( 𝐴𝑉𝑋𝐺 ) → 𝐻 = ( 𝑔𝐺 ↦ ( 𝑎𝐴 ↦ ( 𝑔𝑌 ) ) ) )
5 fveq1 ( 𝑔 = 𝑋 → ( 𝑔𝑌 ) = ( 𝑋𝑌 ) )
6 5 adantr ( ( 𝑔 = 𝑋𝑎𝐴 ) → ( 𝑔𝑌 ) = ( 𝑋𝑌 ) )
7 6 mpteq2dva ( 𝑔 = 𝑋 → ( 𝑎𝐴 ↦ ( 𝑔𝑌 ) ) = ( 𝑎𝐴 ↦ ( 𝑋𝑌 ) ) )
8 7 adantl ( ( ( 𝐴𝑉𝑋𝐺 ) ∧ 𝑔 = 𝑋 ) → ( 𝑎𝐴 ↦ ( 𝑔𝑌 ) ) = ( 𝑎𝐴 ↦ ( 𝑋𝑌 ) ) )
9 simpr ( ( 𝐴𝑉𝑋𝐺 ) → 𝑋𝐺 )
10 simpl ( ( 𝐴𝑉𝑋𝐺 ) → 𝐴𝑉 )
11 10 mptexd ( ( 𝐴𝑉𝑋𝐺 ) → ( 𝑎𝐴 ↦ ( 𝑋𝑌 ) ) ∈ V )
12 4 8 9 11 fvmptd ( ( 𝐴𝑉𝑋𝐺 ) → ( 𝐻𝑋 ) = ( 𝑎𝐴 ↦ ( 𝑋𝑌 ) ) )