Step |
Hyp |
Ref |
Expression |
1 |
|
cfsetsnfsetfv.f |
⊢ 𝐹 = { 𝑓 ∣ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∃ 𝑏 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( 𝑓 ‘ 𝑧 ) = 𝑏 ) } |
2 |
|
cfsetsnfsetfv.g |
⊢ 𝐺 = { 𝑥 ∣ 𝑥 : { 𝑌 } ⟶ 𝐵 } |
3 |
|
cfsetsnfsetfv.h |
⊢ 𝐻 = ( 𝑔 ∈ 𝐺 ↦ ( 𝑎 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑌 ) ) ) |
4 |
3
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺 ) → 𝐻 = ( 𝑔 ∈ 𝐺 ↦ ( 𝑎 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑌 ) ) ) ) |
5 |
|
fveq1 |
⊢ ( 𝑔 = 𝑋 → ( 𝑔 ‘ 𝑌 ) = ( 𝑋 ‘ 𝑌 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝑔 = 𝑋 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑌 ) = ( 𝑋 ‘ 𝑌 ) ) |
7 |
6
|
mpteq2dva |
⊢ ( 𝑔 = 𝑋 → ( 𝑎 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑌 ) ) = ( 𝑎 ∈ 𝐴 ↦ ( 𝑋 ‘ 𝑌 ) ) ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺 ) ∧ 𝑔 = 𝑋 ) → ( 𝑎 ∈ 𝐴 ↦ ( 𝑔 ‘ 𝑌 ) ) = ( 𝑎 ∈ 𝐴 ↦ ( 𝑋 ‘ 𝑌 ) ) ) |
9 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺 ) → 𝑋 ∈ 𝐺 ) |
10 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺 ) → 𝐴 ∈ 𝑉 ) |
11 |
10
|
mptexd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺 ) → ( 𝑎 ∈ 𝐴 ↦ ( 𝑋 ‘ 𝑌 ) ) ∈ V ) |
12 |
4 8 9 11
|
fvmptd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺 ) → ( 𝐻 ‘ 𝑋 ) = ( 𝑎 ∈ 𝐴 ↦ ( 𝑋 ‘ 𝑌 ) ) ) |