Metamath Proof Explorer


Theorem cfsetsnfsetfv

Description: The function value of the mapping of the class of singleton functions into the class of constant functions. (Contributed by AV, 13-Sep-2024)

Ref Expression
Hypotheses cfsetsnfsetfv.f
|- F = { f | ( f : A --> B /\ E. b e. B A. z e. A ( f ` z ) = b ) }
cfsetsnfsetfv.g
|- G = { x | x : { Y } --> B }
cfsetsnfsetfv.h
|- H = ( g e. G |-> ( a e. A |-> ( g ` Y ) ) )
Assertion cfsetsnfsetfv
|- ( ( A e. V /\ X e. G ) -> ( H ` X ) = ( a e. A |-> ( X ` Y ) ) )

Proof

Step Hyp Ref Expression
1 cfsetsnfsetfv.f
 |-  F = { f | ( f : A --> B /\ E. b e. B A. z e. A ( f ` z ) = b ) }
2 cfsetsnfsetfv.g
 |-  G = { x | x : { Y } --> B }
3 cfsetsnfsetfv.h
 |-  H = ( g e. G |-> ( a e. A |-> ( g ` Y ) ) )
4 3 a1i
 |-  ( ( A e. V /\ X e. G ) -> H = ( g e. G |-> ( a e. A |-> ( g ` Y ) ) ) )
5 fveq1
 |-  ( g = X -> ( g ` Y ) = ( X ` Y ) )
6 5 adantr
 |-  ( ( g = X /\ a e. A ) -> ( g ` Y ) = ( X ` Y ) )
7 6 mpteq2dva
 |-  ( g = X -> ( a e. A |-> ( g ` Y ) ) = ( a e. A |-> ( X ` Y ) ) )
8 7 adantl
 |-  ( ( ( A e. V /\ X e. G ) /\ g = X ) -> ( a e. A |-> ( g ` Y ) ) = ( a e. A |-> ( X ` Y ) ) )
9 simpr
 |-  ( ( A e. V /\ X e. G ) -> X e. G )
10 simpl
 |-  ( ( A e. V /\ X e. G ) -> A e. V )
11 10 mptexd
 |-  ( ( A e. V /\ X e. G ) -> ( a e. A |-> ( X ` Y ) ) e. _V )
12 4 8 9 11 fvmptd
 |-  ( ( A e. V /\ X e. G ) -> ( H ` X ) = ( a e. A |-> ( X ` Y ) ) )