Metamath Proof Explorer


Theorem cfsetssfset

Description: The class of constant functions is a subclass of the class of functions. (Contributed by AV, 13-Sep-2024)

Ref Expression
Hypothesis cfsetsnfsetfv.f F = f | f : A B b B z A f z = b
Assertion cfsetssfset F f | f : A B

Proof

Step Hyp Ref Expression
1 cfsetsnfsetfv.f F = f | f : A B b B z A f z = b
2 ss2ab f | f : A B b B z A f z = b f | f : A B f f : A B b B z A f z = b f : A B
3 simpl f : A B b B z A f z = b f : A B
4 2 3 mpgbir f | f : A B b B z A f z = b f | f : A B
5 1 4 eqsstri F f | f : A B