Metamath Proof Explorer


Theorem cfsetssfset

Description: The class of constant functions is a subclass of the class of functions. (Contributed by AV, 13-Sep-2024)

Ref Expression
Hypothesis cfsetsnfsetfv.f
|- F = { f | ( f : A --> B /\ E. b e. B A. z e. A ( f ` z ) = b ) }
Assertion cfsetssfset
|- F C_ { f | f : A --> B }

Proof

Step Hyp Ref Expression
1 cfsetsnfsetfv.f
 |-  F = { f | ( f : A --> B /\ E. b e. B A. z e. A ( f ` z ) = b ) }
2 ss2ab
 |-  ( { f | ( f : A --> B /\ E. b e. B A. z e. A ( f ` z ) = b ) } C_ { f | f : A --> B } <-> A. f ( ( f : A --> B /\ E. b e. B A. z e. A ( f ` z ) = b ) -> f : A --> B ) )
3 simpl
 |-  ( ( f : A --> B /\ E. b e. B A. z e. A ( f ` z ) = b ) -> f : A --> B )
4 2 3 mpgbir
 |-  { f | ( f : A --> B /\ E. b e. B A. z e. A ( f ` z ) = b ) } C_ { f | f : A --> B }
5 1 4 eqsstri
 |-  F C_ { f | f : A --> B }