Metamath Proof Explorer


Theorem fsetsnf1o

Description: The mapping of an element of a class to a singleton function is a bijection. (Contributed by AV, 13-Sep-2024)

Ref Expression
Hypotheses fsetsnf.a A = y | b B y = S b
fsetsnf.f F = x B S x
Assertion fsetsnf1o S V F : B 1-1 onto A

Proof

Step Hyp Ref Expression
1 fsetsnf.a A = y | b B y = S b
2 fsetsnf.f F = x B S x
3 1 2 fsetsnf1 S V F : B 1-1 A
4 1 2 fsetsnfo S V F : B onto A
5 df-f1o F : B 1-1 onto A F : B 1-1 A F : B onto A
6 3 4 5 sylanbrc S V F : B 1-1 onto A