Metamath Proof Explorer


Theorem fsetsnf1

Description: The mapping of an element of a class to a singleton function is an injection. (Contributed by AV, 13-Sep-2024)

Ref Expression
Hypotheses fsetsnf.a A=y|bBy=Sb
fsetsnf.f F=xBSx
Assertion fsetsnf1 SVF:B1-1A

Proof

Step Hyp Ref Expression
1 fsetsnf.a A=y|bBy=Sb
2 fsetsnf.f F=xBSx
3 1 2 fsetsnf SVF:BA
4 2 a1i mBnBF=xBSx
5 opeq2 x=mSx=Sm
6 5 sneqd x=mSx=Sm
7 6 adantl mBnBx=mSx=Sm
8 simpl mBnBmB
9 snex SmV
10 9 a1i mBnBSmV
11 4 7 8 10 fvmptd mBnBFm=Sm
12 opeq2 x=nSx=Sn
13 12 sneqd x=nSx=Sn
14 13 adantl mBnBx=nSx=Sn
15 simpr mBnBnB
16 snex SnV
17 16 a1i mBnBSnV
18 4 14 15 17 fvmptd mBnBFn=Sn
19 11 18 eqeq12d mBnBFm=FnSm=Sn
20 19 adantl SVmBnBFm=FnSm=Sn
21 opex SmV
22 21 sneqr Sm=SnSm=Sn
23 opthg SVmBSm=SnS=Sm=n
24 23 adantrr SVmBnBSm=SnS=Sm=n
25 simpr S=Sm=nm=n
26 24 25 syl6bi SVmBnBSm=Snm=n
27 22 26 syl5 SVmBnBSm=Snm=n
28 20 27 sylbid SVmBnBFm=Fnm=n
29 28 ralrimivva SVmBnBFm=Fnm=n
30 dff13 F:B1-1AF:BAmBnBFm=Fnm=n
31 3 29 30 sylanbrc SVF:B1-1A