Step |
Hyp |
Ref |
Expression |
1 |
|
fsetsnf.a |
|- A = { y | E. b e. B y = { <. S , b >. } } |
2 |
|
fsetsnf.f |
|- F = ( x e. B |-> { <. S , x >. } ) |
3 |
1 2
|
fsetsnf |
|- ( S e. V -> F : B --> A ) |
4 |
2
|
a1i |
|- ( ( m e. B /\ n e. B ) -> F = ( x e. B |-> { <. S , x >. } ) ) |
5 |
|
opeq2 |
|- ( x = m -> <. S , x >. = <. S , m >. ) |
6 |
5
|
sneqd |
|- ( x = m -> { <. S , x >. } = { <. S , m >. } ) |
7 |
6
|
adantl |
|- ( ( ( m e. B /\ n e. B ) /\ x = m ) -> { <. S , x >. } = { <. S , m >. } ) |
8 |
|
simpl |
|- ( ( m e. B /\ n e. B ) -> m e. B ) |
9 |
|
snex |
|- { <. S , m >. } e. _V |
10 |
9
|
a1i |
|- ( ( m e. B /\ n e. B ) -> { <. S , m >. } e. _V ) |
11 |
4 7 8 10
|
fvmptd |
|- ( ( m e. B /\ n e. B ) -> ( F ` m ) = { <. S , m >. } ) |
12 |
|
opeq2 |
|- ( x = n -> <. S , x >. = <. S , n >. ) |
13 |
12
|
sneqd |
|- ( x = n -> { <. S , x >. } = { <. S , n >. } ) |
14 |
13
|
adantl |
|- ( ( ( m e. B /\ n e. B ) /\ x = n ) -> { <. S , x >. } = { <. S , n >. } ) |
15 |
|
simpr |
|- ( ( m e. B /\ n e. B ) -> n e. B ) |
16 |
|
snex |
|- { <. S , n >. } e. _V |
17 |
16
|
a1i |
|- ( ( m e. B /\ n e. B ) -> { <. S , n >. } e. _V ) |
18 |
4 14 15 17
|
fvmptd |
|- ( ( m e. B /\ n e. B ) -> ( F ` n ) = { <. S , n >. } ) |
19 |
11 18
|
eqeq12d |
|- ( ( m e. B /\ n e. B ) -> ( ( F ` m ) = ( F ` n ) <-> { <. S , m >. } = { <. S , n >. } ) ) |
20 |
19
|
adantl |
|- ( ( S e. V /\ ( m e. B /\ n e. B ) ) -> ( ( F ` m ) = ( F ` n ) <-> { <. S , m >. } = { <. S , n >. } ) ) |
21 |
|
opex |
|- <. S , m >. e. _V |
22 |
21
|
sneqr |
|- ( { <. S , m >. } = { <. S , n >. } -> <. S , m >. = <. S , n >. ) |
23 |
|
opthg |
|- ( ( S e. V /\ m e. B ) -> ( <. S , m >. = <. S , n >. <-> ( S = S /\ m = n ) ) ) |
24 |
23
|
adantrr |
|- ( ( S e. V /\ ( m e. B /\ n e. B ) ) -> ( <. S , m >. = <. S , n >. <-> ( S = S /\ m = n ) ) ) |
25 |
|
simpr |
|- ( ( S = S /\ m = n ) -> m = n ) |
26 |
24 25
|
syl6bi |
|- ( ( S e. V /\ ( m e. B /\ n e. B ) ) -> ( <. S , m >. = <. S , n >. -> m = n ) ) |
27 |
22 26
|
syl5 |
|- ( ( S e. V /\ ( m e. B /\ n e. B ) ) -> ( { <. S , m >. } = { <. S , n >. } -> m = n ) ) |
28 |
20 27
|
sylbid |
|- ( ( S e. V /\ ( m e. B /\ n e. B ) ) -> ( ( F ` m ) = ( F ` n ) -> m = n ) ) |
29 |
28
|
ralrimivva |
|- ( S e. V -> A. m e. B A. n e. B ( ( F ` m ) = ( F ` n ) -> m = n ) ) |
30 |
|
dff13 |
|- ( F : B -1-1-> A <-> ( F : B --> A /\ A. m e. B A. n e. B ( ( F ` m ) = ( F ` n ) -> m = n ) ) ) |
31 |
3 29 30
|
sylanbrc |
|- ( S e. V -> F : B -1-1-> A ) |