Step |
Hyp |
Ref |
Expression |
1 |
|
fsetsnf.a |
|- A = { y | E. b e. B y = { <. S , b >. } } |
2 |
|
fsetsnf.f |
|- F = ( x e. B |-> { <. S , x >. } ) |
3 |
|
simpr |
|- ( ( S e. V /\ x e. B ) -> x e. B ) |
4 |
|
opeq2 |
|- ( b = x -> <. S , b >. = <. S , x >. ) |
5 |
4
|
sneqd |
|- ( b = x -> { <. S , b >. } = { <. S , x >. } ) |
6 |
5
|
eqeq2d |
|- ( b = x -> ( { <. S , x >. } = { <. S , b >. } <-> { <. S , x >. } = { <. S , x >. } ) ) |
7 |
6
|
adantl |
|- ( ( ( S e. V /\ x e. B ) /\ b = x ) -> ( { <. S , x >. } = { <. S , b >. } <-> { <. S , x >. } = { <. S , x >. } ) ) |
8 |
|
eqidd |
|- ( ( S e. V /\ x e. B ) -> { <. S , x >. } = { <. S , x >. } ) |
9 |
3 7 8
|
rspcedvd |
|- ( ( S e. V /\ x e. B ) -> E. b e. B { <. S , x >. } = { <. S , b >. } ) |
10 |
|
snex |
|- { <. S , x >. } e. _V |
11 |
|
eqeq1 |
|- ( y = { <. S , x >. } -> ( y = { <. S , b >. } <-> { <. S , x >. } = { <. S , b >. } ) ) |
12 |
11
|
rexbidv |
|- ( y = { <. S , x >. } -> ( E. b e. B y = { <. S , b >. } <-> E. b e. B { <. S , x >. } = { <. S , b >. } ) ) |
13 |
10 12 1
|
elab2 |
|- ( { <. S , x >. } e. A <-> E. b e. B { <. S , x >. } = { <. S , b >. } ) |
14 |
9 13
|
sylibr |
|- ( ( S e. V /\ x e. B ) -> { <. S , x >. } e. A ) |
15 |
14 2
|
fmptd |
|- ( S e. V -> F : B --> A ) |