Metamath Proof Explorer


Theorem fsetsnf

Description: The mapping of an element of a class to a singleton function is a function. (Contributed by AV, 13-Sep-2024)

Ref Expression
Hypotheses fsetsnf.a A = y | b B y = S b
fsetsnf.f F = x B S x
Assertion fsetsnf S V F : B A

Proof

Step Hyp Ref Expression
1 fsetsnf.a A = y | b B y = S b
2 fsetsnf.f F = x B S x
3 simpr S V x B x B
4 opeq2 b = x S b = S x
5 4 sneqd b = x S b = S x
6 5 eqeq2d b = x S x = S b S x = S x
7 6 adantl S V x B b = x S x = S b S x = S x
8 eqidd S V x B S x = S x
9 3 7 8 rspcedvd S V x B b B S x = S b
10 snex S x V
11 eqeq1 y = S x y = S b S x = S b
12 11 rexbidv y = S x b B y = S b b B S x = S b
13 10 12 1 elab2 S x A b B S x = S b
14 9 13 sylibr S V x B S x A
15 14 2 fmptd S V F : B A