Metamath Proof Explorer


Theorem fsetsnf

Description: The mapping of an element of a class to a singleton function is a function. (Contributed by AV, 13-Sep-2024)

Ref Expression
Hypotheses fsetsnf.a A=y|bBy=Sb
fsetsnf.f F=xBSx
Assertion fsetsnf SVF:BA

Proof

Step Hyp Ref Expression
1 fsetsnf.a A=y|bBy=Sb
2 fsetsnf.f F=xBSx
3 simpr SVxBxB
4 opeq2 b=xSb=Sx
5 4 sneqd b=xSb=Sx
6 5 eqeq2d b=xSx=SbSx=Sx
7 6 adantl SVxBb=xSx=SbSx=Sx
8 eqidd SVxBSx=Sx
9 3 7 8 rspcedvd SVxBbBSx=Sb
10 snex SxV
11 eqeq1 y=Sxy=SbSx=Sb
12 11 rexbidv y=SxbBy=SbbBSx=Sb
13 10 12 1 elab2 SxAbBSx=Sb
14 9 13 sylibr SVxBSxA
15 14 2 fmptd SVF:BA