| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsetsnf.a |
|
| 2 |
|
fsetsnf.f |
|
| 3 |
1 2
|
fsetsnf |
|
| 4 |
|
vex |
|
| 5 |
|
eqeq1 |
|
| 6 |
5
|
rexbidv |
|
| 7 |
4 6 1
|
elab2 |
|
| 8 |
|
opeq2 |
|
| 9 |
8
|
sneqd |
|
| 10 |
9
|
eqeq2d |
|
| 11 |
10
|
cbvrexvw |
|
| 12 |
|
simpr |
|
| 13 |
2
|
a1i |
|
| 14 |
|
opeq2 |
|
| 15 |
14
|
sneqd |
|
| 16 |
15
|
adantl |
|
| 17 |
|
simpr |
|
| 18 |
|
snex |
|
| 19 |
18
|
a1i |
|
| 20 |
13 16 17 19
|
fvmptd |
|
| 21 |
20
|
eqcomd |
|
| 22 |
21
|
adantr |
|
| 23 |
12 22
|
eqtrd |
|
| 24 |
23
|
ex |
|
| 25 |
24
|
reximdva |
|
| 26 |
11 25
|
biimtrid |
|
| 27 |
7 26
|
biimtrid |
|
| 28 |
27
|
imp |
|
| 29 |
28
|
ralrimiva |
|
| 30 |
|
dffo3 |
|
| 31 |
3 29 30
|
sylanbrc |
|