Metamath Proof Explorer


Theorem fsetsnfo

Description: The mapping of an element of a class to a singleton function is a surjection. (Contributed by AV, 13-Sep-2024)

Ref Expression
Hypotheses fsetsnf.a A = y | b B y = S b
fsetsnf.f F = x B S x
Assertion fsetsnfo S V F : B onto A

Proof

Step Hyp Ref Expression
1 fsetsnf.a A = y | b B y = S b
2 fsetsnf.f F = x B S x
3 1 2 fsetsnf S V F : B A
4 vex m V
5 eqeq1 y = m y = S b m = S b
6 5 rexbidv y = m b B y = S b b B m = S b
7 4 6 1 elab2 m A b B m = S b
8 opeq2 b = n S b = S n
9 8 sneqd b = n S b = S n
10 9 eqeq2d b = n m = S b m = S n
11 10 cbvrexvw b B m = S b n B m = S n
12 simpr S V n B m = S n m = S n
13 2 a1i S V n B F = x B S x
14 opeq2 x = n S x = S n
15 14 sneqd x = n S x = S n
16 15 adantl S V n B x = n S x = S n
17 simpr S V n B n B
18 snex S n V
19 18 a1i S V n B S n V
20 13 16 17 19 fvmptd S V n B F n = S n
21 20 eqcomd S V n B S n = F n
22 21 adantr S V n B m = S n S n = F n
23 12 22 eqtrd S V n B m = S n m = F n
24 23 ex S V n B m = S n m = F n
25 24 reximdva S V n B m = S n n B m = F n
26 11 25 syl5bi S V b B m = S b n B m = F n
27 7 26 syl5bi S V m A n B m = F n
28 27 imp S V m A n B m = F n
29 28 ralrimiva S V m A n B m = F n
30 dffo3 F : B onto A F : B A m A n B m = F n
31 3 29 30 sylanbrc S V F : B onto A