Metamath Proof Explorer


Theorem fcoreslem1

Description: Lemma 1 for fcores . (Contributed by AV, 17-Sep-2024)

Ref Expression
Hypotheses fcores.f φ F : A B
fcores.e E = ran F C
fcores.p P = F -1 C
Assertion fcoreslem1 φ P = F -1 E

Proof

Step Hyp Ref Expression
1 fcores.f φ F : A B
2 fcores.e E = ran F C
3 fcores.p P = F -1 C
4 1 ffund φ Fun F
5 cnvimainrn Fun F F -1 ran F C = F -1 C
6 4 5 syl φ F -1 ran F C = F -1 C
7 6 eqcomd φ F -1 C = F -1 ran F C
8 2 imaeq2i F -1 E = F -1 ran F C
9 7 3 8 3eqtr4g φ P = F -1 E