Metamath Proof Explorer


Theorem fcoreslem2

Description: Lemma 2 for fcores . (Contributed by AV, 17-Sep-2024)

Ref Expression
Hypotheses fcores.f φ F : A B
fcores.e E = ran F C
fcores.p P = F -1 C
fcores.x X = F P
Assertion fcoreslem2 φ ran X = E

Proof

Step Hyp Ref Expression
1 fcores.f φ F : A B
2 fcores.e E = ran F C
3 fcores.p P = F -1 C
4 fcores.x X = F P
5 df-ima F P = ran F P
6 4 rneqi ran X = ran F P
7 6 eqcomi ran F P = ran X
8 7 a1i φ ran F P = ran X
9 5 8 eqtr2id φ ran X = F P
10 1 2 3 fcoreslem1 φ P = F -1 E
11 10 imaeq2d φ F P = F F -1 E
12 1 ffund φ Fun F
13 funimacnv Fun F F F -1 E = E ran F
14 12 13 syl φ F F -1 E = E ran F
15 inss1 ran F C ran F
16 2 15 eqsstri E ran F
17 16 a1i φ E ran F
18 df-ss E ran F E ran F = E
19 17 18 sylib φ E ran F = E
20 14 19 eqtrd φ F F -1 E = E
21 9 11 20 3eqtrd φ ran X = E