Metamath Proof Explorer


Theorem fcores

Description: Every composite function ( G o. F ) can be written as composition of restrictions of the composed functions (to their minimum domains). (Contributed by GL and AV, 17-Sep-2024)

Ref Expression
Hypotheses fcores.f φF:AB
fcores.e E=ranFC
fcores.p P=F-1C
fcores.x X=FP
fcores.g φG:CD
fcores.y Y=GE
Assertion fcores φGF=YX

Proof

Step Hyp Ref Expression
1 fcores.f φF:AB
2 fcores.e E=ranFC
3 fcores.p P=F-1C
4 fcores.x X=FP
5 fcores.g φG:CD
6 fcores.y Y=GE
7 1 ffund φFunF
8 fcof G:CDFunFGF:F-1CD
9 5 7 8 syl2anc φGF:F-1CD
10 9 ffnd φGFFnF-1C
11 3 fneq2i GFFnPGFFnF-1C
12 10 11 sylibr φGFFnP
13 1 2 3 4 5 6 fcoreslem4 φYXFnP
14 4 fveq1i Xx=FPx
15 simpr φxPxP
16 15 fvresd φxPFPx=Fx
17 14 16 eqtrid φxPXx=Fx
18 17 fveq2d φxPYXx=YFx
19 6 fveq1i YFx=GEFx
20 cnvimass F-1CdomF
21 3 20 eqsstri PdomF
22 21 sseli xPxdomF
23 fvelrn FunFxdomFFxranF
24 7 22 23 syl2an φxPFxranF
25 3 eleq2i xPxF-1C
26 25 biimpi xPxF-1C
27 fvimacnvi FunFxF-1CFxC
28 7 26 27 syl2an φxPFxC
29 24 28 elind φxPFxranFC
30 29 2 eleqtrrdi φxPFxE
31 30 fvresd φxPGEFx=GFx
32 19 31 eqtrid φxPYFx=GFx
33 18 32 eqtrd φxPYXx=GFx
34 1 2 3 4 fcoreslem3 φX:PontoE
35 fof X:PontoEX:PE
36 34 35 syl φX:PE
37 36 adantr φxPX:PE
38 37 15 fvco3d φxPYXx=YXx
39 1 adantr φxPF:AB
40 21 a1i φPdomF
41 40 sselda φxPxdomF
42 1 fdmd φdomF=A
43 42 eqcomd φA=domF
44 43 eleq2d φxAxdomF
45 44 adantr φxPxAxdomF
46 41 45 mpbird φxPxA
47 39 46 fvco3d φxPGFx=GFx
48 33 38 47 3eqtr4rd φxPGFx=YXx
49 12 13 48 eqfnfvd φGF=YX