Description: Every composite function ( G o. F ) can be written as composition of restrictions of the composed functions (to their minimum domains). (Contributed by GL and AV, 17-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fcores.f | |
|
fcores.e | |
||
fcores.p | |
||
fcores.x | |
||
fcores.g | |
||
fcores.y | |
||
Assertion | fcores | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcores.f | |
|
2 | fcores.e | |
|
3 | fcores.p | |
|
4 | fcores.x | |
|
5 | fcores.g | |
|
6 | fcores.y | |
|
7 | 1 | ffund | |
8 | fcof | |
|
9 | 5 7 8 | syl2anc | |
10 | 9 | ffnd | |
11 | 3 | fneq2i | |
12 | 10 11 | sylibr | |
13 | 1 2 3 4 5 6 | fcoreslem4 | |
14 | 4 | fveq1i | |
15 | simpr | |
|
16 | 15 | fvresd | |
17 | 14 16 | eqtrid | |
18 | 17 | fveq2d | |
19 | 6 | fveq1i | |
20 | cnvimass | |
|
21 | 3 20 | eqsstri | |
22 | 21 | sseli | |
23 | fvelrn | |
|
24 | 7 22 23 | syl2an | |
25 | 3 | eleq2i | |
26 | 25 | biimpi | |
27 | fvimacnvi | |
|
28 | 7 26 27 | syl2an | |
29 | 24 28 | elind | |
30 | 29 2 | eleqtrrdi | |
31 | 30 | fvresd | |
32 | 19 31 | eqtrid | |
33 | 18 32 | eqtrd | |
34 | 1 2 3 4 | fcoreslem3 | |
35 | fof | |
|
36 | 34 35 | syl | |
37 | 36 | adantr | |
38 | 37 15 | fvco3d | |
39 | 1 | adantr | |
40 | 21 | a1i | |
41 | 40 | sselda | |
42 | 1 | fdmd | |
43 | 42 | eqcomd | |
44 | 43 | eleq2d | |
45 | 44 | adantr | |
46 | 41 45 | mpbird | |
47 | 39 46 | fvco3d | |
48 | 33 38 47 | 3eqtr4rd | |
49 | 12 13 48 | eqfnfvd | |