| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fcores.f |
|- ( ph -> F : A --> B ) |
| 2 |
|
fcores.e |
|- E = ( ran F i^i C ) |
| 3 |
|
fcores.p |
|- P = ( `' F " C ) |
| 4 |
|
fcores.x |
|- X = ( F |` P ) |
| 5 |
|
fcores.g |
|- ( ph -> G : C --> D ) |
| 6 |
|
fcores.y |
|- Y = ( G |` E ) |
| 7 |
1
|
ffund |
|- ( ph -> Fun F ) |
| 8 |
|
fcof |
|- ( ( G : C --> D /\ Fun F ) -> ( G o. F ) : ( `' F " C ) --> D ) |
| 9 |
5 7 8
|
syl2anc |
|- ( ph -> ( G o. F ) : ( `' F " C ) --> D ) |
| 10 |
9
|
ffnd |
|- ( ph -> ( G o. F ) Fn ( `' F " C ) ) |
| 11 |
3
|
fneq2i |
|- ( ( G o. F ) Fn P <-> ( G o. F ) Fn ( `' F " C ) ) |
| 12 |
10 11
|
sylibr |
|- ( ph -> ( G o. F ) Fn P ) |
| 13 |
1 2 3 4 5 6
|
fcoreslem4 |
|- ( ph -> ( Y o. X ) Fn P ) |
| 14 |
4
|
fveq1i |
|- ( X ` x ) = ( ( F |` P ) ` x ) |
| 15 |
|
simpr |
|- ( ( ph /\ x e. P ) -> x e. P ) |
| 16 |
15
|
fvresd |
|- ( ( ph /\ x e. P ) -> ( ( F |` P ) ` x ) = ( F ` x ) ) |
| 17 |
14 16
|
eqtrid |
|- ( ( ph /\ x e. P ) -> ( X ` x ) = ( F ` x ) ) |
| 18 |
17
|
fveq2d |
|- ( ( ph /\ x e. P ) -> ( Y ` ( X ` x ) ) = ( Y ` ( F ` x ) ) ) |
| 19 |
6
|
fveq1i |
|- ( Y ` ( F ` x ) ) = ( ( G |` E ) ` ( F ` x ) ) |
| 20 |
|
cnvimass |
|- ( `' F " C ) C_ dom F |
| 21 |
3 20
|
eqsstri |
|- P C_ dom F |
| 22 |
21
|
sseli |
|- ( x e. P -> x e. dom F ) |
| 23 |
|
fvelrn |
|- ( ( Fun F /\ x e. dom F ) -> ( F ` x ) e. ran F ) |
| 24 |
7 22 23
|
syl2an |
|- ( ( ph /\ x e. P ) -> ( F ` x ) e. ran F ) |
| 25 |
3
|
eleq2i |
|- ( x e. P <-> x e. ( `' F " C ) ) |
| 26 |
25
|
biimpi |
|- ( x e. P -> x e. ( `' F " C ) ) |
| 27 |
|
fvimacnvi |
|- ( ( Fun F /\ x e. ( `' F " C ) ) -> ( F ` x ) e. C ) |
| 28 |
7 26 27
|
syl2an |
|- ( ( ph /\ x e. P ) -> ( F ` x ) e. C ) |
| 29 |
24 28
|
elind |
|- ( ( ph /\ x e. P ) -> ( F ` x ) e. ( ran F i^i C ) ) |
| 30 |
29 2
|
eleqtrrdi |
|- ( ( ph /\ x e. P ) -> ( F ` x ) e. E ) |
| 31 |
30
|
fvresd |
|- ( ( ph /\ x e. P ) -> ( ( G |` E ) ` ( F ` x ) ) = ( G ` ( F ` x ) ) ) |
| 32 |
19 31
|
eqtrid |
|- ( ( ph /\ x e. P ) -> ( Y ` ( F ` x ) ) = ( G ` ( F ` x ) ) ) |
| 33 |
18 32
|
eqtrd |
|- ( ( ph /\ x e. P ) -> ( Y ` ( X ` x ) ) = ( G ` ( F ` x ) ) ) |
| 34 |
1 2 3 4
|
fcoreslem3 |
|- ( ph -> X : P -onto-> E ) |
| 35 |
|
fof |
|- ( X : P -onto-> E -> X : P --> E ) |
| 36 |
34 35
|
syl |
|- ( ph -> X : P --> E ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ x e. P ) -> X : P --> E ) |
| 38 |
37 15
|
fvco3d |
|- ( ( ph /\ x e. P ) -> ( ( Y o. X ) ` x ) = ( Y ` ( X ` x ) ) ) |
| 39 |
1
|
adantr |
|- ( ( ph /\ x e. P ) -> F : A --> B ) |
| 40 |
21
|
a1i |
|- ( ph -> P C_ dom F ) |
| 41 |
40
|
sselda |
|- ( ( ph /\ x e. P ) -> x e. dom F ) |
| 42 |
1
|
fdmd |
|- ( ph -> dom F = A ) |
| 43 |
42
|
eqcomd |
|- ( ph -> A = dom F ) |
| 44 |
43
|
eleq2d |
|- ( ph -> ( x e. A <-> x e. dom F ) ) |
| 45 |
44
|
adantr |
|- ( ( ph /\ x e. P ) -> ( x e. A <-> x e. dom F ) ) |
| 46 |
41 45
|
mpbird |
|- ( ( ph /\ x e. P ) -> x e. A ) |
| 47 |
39 46
|
fvco3d |
|- ( ( ph /\ x e. P ) -> ( ( G o. F ) ` x ) = ( G ` ( F ` x ) ) ) |
| 48 |
33 38 47
|
3eqtr4rd |
|- ( ( ph /\ x e. P ) -> ( ( G o. F ) ` x ) = ( ( Y o. X ) ` x ) ) |
| 49 |
12 13 48
|
eqfnfvd |
|- ( ph -> ( G o. F ) = ( Y o. X ) ) |