Metamath Proof Explorer


Theorem fcoresf1lem

Description: Lemma for fcoresf1 . (Contributed by AV, 18-Sep-2024)

Ref Expression
Hypotheses fcores.f
|- ( ph -> F : A --> B )
fcores.e
|- E = ( ran F i^i C )
fcores.p
|- P = ( `' F " C )
fcores.x
|- X = ( F |` P )
fcores.g
|- ( ph -> G : C --> D )
fcores.y
|- Y = ( G |` E )
Assertion fcoresf1lem
|- ( ( ph /\ Z e. P ) -> ( ( G o. F ) ` Z ) = ( Y ` ( X ` Z ) ) )

Proof

Step Hyp Ref Expression
1 fcores.f
 |-  ( ph -> F : A --> B )
2 fcores.e
 |-  E = ( ran F i^i C )
3 fcores.p
 |-  P = ( `' F " C )
4 fcores.x
 |-  X = ( F |` P )
5 fcores.g
 |-  ( ph -> G : C --> D )
6 fcores.y
 |-  Y = ( G |` E )
7 1 2 3 4 5 6 fcores
 |-  ( ph -> ( G o. F ) = ( Y o. X ) )
8 7 fveq1d
 |-  ( ph -> ( ( G o. F ) ` Z ) = ( ( Y o. X ) ` Z ) )
9 8 adantr
 |-  ( ( ph /\ Z e. P ) -> ( ( G o. F ) ` Z ) = ( ( Y o. X ) ` Z ) )
10 1 2 3 4 fcoreslem3
 |-  ( ph -> X : P -onto-> E )
11 fof
 |-  ( X : P -onto-> E -> X : P --> E )
12 10 11 syl
 |-  ( ph -> X : P --> E )
13 12 adantr
 |-  ( ( ph /\ Z e. P ) -> X : P --> E )
14 simpr
 |-  ( ( ph /\ Z e. P ) -> Z e. P )
15 13 14 fvco3d
 |-  ( ( ph /\ Z e. P ) -> ( ( Y o. X ) ` Z ) = ( Y ` ( X ` Z ) ) )
16 9 15 eqtrd
 |-  ( ( ph /\ Z e. P ) -> ( ( G o. F ) ` Z ) = ( Y ` ( X ` Z ) ) )