Metamath Proof Explorer


Theorem fcoreslem3

Description: Lemma 3 for fcores . (Contributed by AV, 13-Sep-2024)

Ref Expression
Hypotheses fcores.f
|- ( ph -> F : A --> B )
fcores.e
|- E = ( ran F i^i C )
fcores.p
|- P = ( `' F " C )
fcores.x
|- X = ( F |` P )
Assertion fcoreslem3
|- ( ph -> X : P -onto-> E )

Proof

Step Hyp Ref Expression
1 fcores.f
 |-  ( ph -> F : A --> B )
2 fcores.e
 |-  E = ( ran F i^i C )
3 fcores.p
 |-  P = ( `' F " C )
4 fcores.x
 |-  X = ( F |` P )
5 1 ffnd
 |-  ( ph -> F Fn A )
6 2 a1i
 |-  ( ph -> E = ( ran F i^i C ) )
7 3 a1i
 |-  ( ph -> P = ( `' F " C ) )
8 5 6 7 rescnvimafod
 |-  ( ph -> ( F |` P ) : P -onto-> E )
9 foeq1
 |-  ( X = ( F |` P ) -> ( X : P -onto-> E <-> ( F |` P ) : P -onto-> E ) )
10 4 9 mp1i
 |-  ( ph -> ( X : P -onto-> E <-> ( F |` P ) : P -onto-> E ) )
11 8 10 mpbird
 |-  ( ph -> X : P -onto-> E )