Description: Lemma 3 for fcores . (Contributed by AV, 13-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fcores.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| fcores.e | ⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) | ||
| fcores.p | ⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) | ||
| fcores.x | ⊢ 𝑋 = ( 𝐹 ↾ 𝑃 ) | ||
| Assertion | fcoreslem3 | ⊢ ( 𝜑 → 𝑋 : 𝑃 –onto→ 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcores.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | fcores.e | ⊢ 𝐸 = ( ran 𝐹 ∩ 𝐶 ) | |
| 3 | fcores.p | ⊢ 𝑃 = ( ◡ 𝐹 “ 𝐶 ) | |
| 4 | fcores.x | ⊢ 𝑋 = ( 𝐹 ↾ 𝑃 ) | |
| 5 | 1 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 6 | 2 | a1i | ⊢ ( 𝜑 → 𝐸 = ( ran 𝐹 ∩ 𝐶 ) ) |
| 7 | 3 | a1i | ⊢ ( 𝜑 → 𝑃 = ( ◡ 𝐹 “ 𝐶 ) ) |
| 8 | 5 6 7 | rescnvimafod | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝑃 ) : 𝑃 –onto→ 𝐸 ) |
| 9 | foeq1 | ⊢ ( 𝑋 = ( 𝐹 ↾ 𝑃 ) → ( 𝑋 : 𝑃 –onto→ 𝐸 ↔ ( 𝐹 ↾ 𝑃 ) : 𝑃 –onto→ 𝐸 ) ) | |
| 10 | 4 9 | mp1i | ⊢ ( 𝜑 → ( 𝑋 : 𝑃 –onto→ 𝐸 ↔ ( 𝐹 ↾ 𝑃 ) : 𝑃 –onto→ 𝐸 ) ) |
| 11 | 8 10 | mpbird | ⊢ ( 𝜑 → 𝑋 : 𝑃 –onto→ 𝐸 ) |