Metamath Proof Explorer


Theorem fcoreslem3

Description: Lemma 3 for fcores . (Contributed by AV, 13-Sep-2024)

Ref Expression
Hypotheses fcores.f ( 𝜑𝐹 : 𝐴𝐵 )
fcores.e 𝐸 = ( ran 𝐹𝐶 )
fcores.p 𝑃 = ( 𝐹𝐶 )
fcores.x 𝑋 = ( 𝐹𝑃 )
Assertion fcoreslem3 ( 𝜑𝑋 : 𝑃onto𝐸 )

Proof

Step Hyp Ref Expression
1 fcores.f ( 𝜑𝐹 : 𝐴𝐵 )
2 fcores.e 𝐸 = ( ran 𝐹𝐶 )
3 fcores.p 𝑃 = ( 𝐹𝐶 )
4 fcores.x 𝑋 = ( 𝐹𝑃 )
5 1 ffnd ( 𝜑𝐹 Fn 𝐴 )
6 2 a1i ( 𝜑𝐸 = ( ran 𝐹𝐶 ) )
7 3 a1i ( 𝜑𝑃 = ( 𝐹𝐶 ) )
8 5 6 7 rescnvimafod ( 𝜑 → ( 𝐹𝑃 ) : 𝑃onto𝐸 )
9 foeq1 ( 𝑋 = ( 𝐹𝑃 ) → ( 𝑋 : 𝑃onto𝐸 ↔ ( 𝐹𝑃 ) : 𝑃onto𝐸 ) )
10 4 9 mp1i ( 𝜑 → ( 𝑋 : 𝑃onto𝐸 ↔ ( 𝐹𝑃 ) : 𝑃onto𝐸 ) )
11 8 10 mpbird ( 𝜑𝑋 : 𝑃onto𝐸 )